• 제목/요약/키워드: Dynamic momentum

검색결과 161건 처리시간 0.026초

Dynamic modeling and system identification for a MMAM controlled flexible manipulator

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.592-598
    • /
    • 1992
  • For a high bandwidth, accurate end of arm motion control with good disturbance rejection, the, Momentum Management Approach to Motion control (MMAM) is proposed. The MMAM is a kind of position control technique that uses inertial forces, applied at or near the end of arm to achieve, high bandwidth and accuracy in movement and in the face of force disturbances. To prove the concept of MMAM, the, end point, control of a flexible manipulator is considered. For this purpose, a flexible beam is mounted on the x-y table, and the MMAM actuator is attached on the top of the flexible beam. A mathematical model is developed for the flexible, beam being controlled by the, MMAM actuator and slide base DC motor. A system identification method is applied to estimate some system parameters in the, model which can not be determined because of the complexity of the mechanism. For the end point, control of the. flexible beam, the, optimal linear output feedback control is introduced.

  • PDF

THERMAL INSTABILITY IN REACTIVE VISCOUS PLANE POISEUILLE / COUETTE FLOWS FOR TWO EXTREME THERMAL BOUNDARY CONDITIONS

  • Ajadi, Suraju Olusegun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제13권2호
    • /
    • pp.73-86
    • /
    • 2009
  • The problem of thermal stability of an exothermic reactive viscous fluid between two parallel walls in the plane Poiseuille and Couette flow configurations is investigated for different thermal boundary conditions. Neglecting reactant consumption, the closed-form solutions obtained from the momentum equation was inserted into the energy equation due to dissipative effect of viscosity. The resulting energy equation was analyzed for criticality using the variational method technique. The problem is characterized by two parameters: the Nusselt number(N) and the dynamic parameter($\Lambda$). We observed that the thermal and dynamical boundary conditions of the wall have led to a significant departure from known results. The influence of the variable pre-exponential factor, due to the numerical exponent m, also give further insight into the behavior of the system and the results expressed graphically and in tabular forms.

  • PDF

스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석 (Spectral Element Analysis of the Pipeline Conveying Internal Flow)

  • 강관호;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • 홍덕헌;황창하
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

Dynamic analysis of laminated nanocomposite pipes under the effect of turbulent in viscoelastic medium

  • Ghaitani, M.M.;Majidian, A.;Shokri, V.
    • Wind and Structures
    • /
    • 제30권2호
    • /
    • pp.133-140
    • /
    • 2020
  • In this paper, critical fluid velocity and frequency of laminated pipe conveying fluid are presented. Each layer of the pipe is reinforced by functionally graded carbon nanotubes (FG-CNTs). The internal fluid is assumed turbulent and the induced forces are calculated by momentum equations. The pipe is resting on viscoelastic foundation with spring, shear and damping constants. The motion equations are derived based on classical shell theory and energy method. Differential quadrature method (DQM) is used for solution and obtaining the critical fluid velocity. The effects of volume percent and distribution of CNT, boundary condition, lamina layer number, length to radius ration of pipe, viscoelastic medium and fluid velocity are shown on the critical fluid velocity. Results show that with increasing the lamina layer number, the critical fluid velocity increases.

동적모멘트를 이용한 Kernel Relaxation의 회귀율 향상 (Improvement Regression Rate of Kernel Relaxation using the Dynamic Momentum)

  • 김은미;양창호;이배호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.313-315
    • /
    • 2002
  • 본 논문에서는 학습 중 모멘트를 동적으로 조절하여 수련속도와 학습 성능을 향상시키는 동적모멘트를 제안하고 회귀방법으로 동적모멘트의 성능을 재확인한다. 제안된 학습방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 단리 반영하는 방법으로 다른 학습법에 비해 보다 유연한 초평면을 갖으며 수렴에 이르는 시간이 오래 걸리는 KR(Kernel Relaxation)에 적용하여 그 성능을 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(support vector machine)의 순차 학습방법 중 최근 발표된 KR에 적용하여 RMS 오류율을 확인하였다. 실험의 공정성을 위해 신경망 분류기 표준평가데이터인 SONAR 데이터를 사용하였으며 실험 결과 동적모멘트를 이용한 회귀율이 정적모멘트를 이용한 방법보다 향상되었음을 확인하였다.

  • PDF

컴퓨터게임을 위한 2D 충돌 감지 알고리즘 비교 분석에 관한 연구 (A Comparative study On 2D Collision Detection Algorithms For Computer Games)

  • 이영재
    • 한국게임학회 논문지
    • /
    • 제1권1호
    • /
    • pp.42-48
    • /
    • 2001
  • Collision is a brief dynamic event consisting of the close approach of two or more objects or particles resulting in an abrupt change of momentum or exchange of energy because of interaction. Collisions play very important role in computer graphics, computer games and animations fields. Collisions can supply active interaction between cyberspace and real world and give much interests for making nice games so reasonable collision detection algorithms are needed. Collision detection algorithms should satisfy being fast and accuracy. In this paper, we survey the 2D collision detection algorithms between geometric models. We present several methods and system available for collision detection.

  • PDF

아크회전과 열팽창 방식을 적용한 소호부에 대한 아크유동 해석 (The development of computational fluid dynamics tools for thermal expansion type interrupter with the arc rotary)

  • ;이방욱;서정민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.813-815
    • /
    • 2000
  • This paper is concerned with the development of PC based computer simulation and design tools for auto-expansion SF6 circuit breaker with the arc rotary. The simulation model takes into account radiation transport, turbulence enhanced momentum. energy transport. The conversation gas dynamic equation together with Maxwells equations are solved. For the arc simulation the straightforward procedure has been used. The temperature, gas density and velocity space distributions within the circuit breaker are simulated in details. The presented results show that the computer simulation of gas flow in SF6 interrupter is a subject of much interest for design and optimization of contacts. The presented results show that the shape and sizes of contacts are chosen by this tool from judiciously compromise between electrical breakdown strength and interruption ability that are functions of gas flow parameters.

  • PDF

다층 신경회로망을 이용한 DC Servo Motor 제어방법 (A Control Method of DC Servo Motor Using a Multi-Layered Neural Network)

  • 김석우;김준식;유종선;이영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.855-858
    • /
    • 1995
  • A neural network has very simple construction (input, output and connection weight) and then it can be robusted against some disturbance. In this paper, we proposed a neuro-controller using a Multi-Layered neural network which is combined with PD controller. The proposed neuro-controller is learned by backpropagation learning rule with momentum and neuro-controller adjusts connection weight in neural network to make approximate dynamic model of DC Servo motor. Computer Simulation results show that the proposed neuro-controller's performance is better than that of origianl PD controller.

  • PDF

고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구 (Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel)

  • 최지영;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF