• Title/Summary/Keyword: Dynamic inversion

Search Result 109, Processing Time 0.024 seconds

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

Development of Inversion Analysis Framework to Determine Nonlinear Shear Moduli of Soils In Situ (현장시험을 통해 지반의 비선형 전단탄성계수를 산정하기 위한 역해석방법의 개발)

  • Ahn, Jae-Hun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.87-93
    • /
    • 2008
  • The large scale shaker can be employed to measure linear and nonlinear shear moduli of soils in situ as a function of shear strain. The method involves applying dynamic loads on a surface foundation measuring the dynamic response of the soil mass beneath the foundation with embedded instrumentation. This paper focuses on the development of a framework of the inverse analysis for the interpretation of test data to estimate linear and nonlinear shear moduli of soils along with the necessity of the inverse analysis. The suggested framework is based on the nonlinear least squares but it uses two iterative loops to account for the nonlinear behavior of soil that sensors are not located. The validity of the suggested inversion framework is tested through a series of numerical parametric studies. An example use of the suggested inversion framework is also shown. Because the field condition may affect the accuracy of suggested method, it is important to conduct a preliminary inverse analysis to quantify the discrepancy between the estimated modulus and the baseline.

Modelling of Fixed Wing UAV and Flight Control Computer Based Autopilot System Development for Integrated Simulation HILS Environment (고정익 UAV 모델링 및 비행조종컴퓨터 기반 오토파일럿 통합 시뮬레이션 HILS 환경 구축)

  • Kim, Lamsu;Lee, Dongwoo;Lee, Hohyeong;Hong, Suwoon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.857-866
    • /
    • 2022
  • Fixed-wing UAVs have long endurance and range capabilities compared to other aerial platforms. These advantages led fixed-wing UAVs to become a popular platform for reconnaissance missions in the military. In this research, we modeled fixed-wing UAVs, including the landing gear model and developed a guidance and control system for flight control computers to construct a HILS environment. We also developed an autopilot system that includes automated take-off, cruise, and landing control for UAVs. We also retrived the Aerodynamic coefficients an UAV using Datcom and AVL software and used them for 6 degrees of freedom modeling. The Flight control computer calculates guidance commands using the Carrot chasing guidance law after distinguishing the condition of the UAV based on 16 pre-defined flight modes and calculates control inputs using Nonlinear Dynamic Inversion (NDI) control scheme. We used RTNngine to integrate the Simulink model and flight control computer for HILS environment formulation.

The contact loads inversion between surrounding rock and primary support based on dynamic deformation curve of a deep-buried tunnel with flexible primary support in consideration

  • Jian Zhou;Yunliang Cui;Xinan Yang;Mingjie Ma;Luheng Li
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.575-587
    • /
    • 2024
  • The contact pressure between the surrounding rock and the support is an important indicator of the surrounding rock pressure. There has been a bottleneck in the prediction of contact loads between surrounding rock and primary support in deep-buried mountain tunnels. The main reason is that a reliable method wasn't existed to quantify the contact loads. This study had been taken into account the flexible support role of the primary support, and the fitting curve of surrounding rock deformation for dynamic tunnel construction was proposed. New formulas for the calculation of contact loads between surrounding rock and primary support were obtained by inversion. Comparative analysis of the calculation results with numerical simulation verified the reliability of the calculation method in this study. It can be seen from the analyses that the contact load between surrounding rock and primary support increases, remains unchanged and decreases during acceleration, uniform velocity and deceleration, respectively, and the deformation of the surrounding rock in the acceleration and deceleration stages cannot completely converted into contact loads. The contact loads between surrounding rock and primary support of medium-strength and weak surrounding rock tunnels are generally within 150 kPa and 1 MPa, respectively. For tunnels with weak surrounding rock, advanced support can be installed to reduce the unique release coefficient λ0 and the value of the constant D, with the purpose of reducing the contact loads between surrounding rock and primary support. Changes in support parameters have a small effect on the contact loads between surrounding rock and primary support, but increase or decrease the safety factor, resulting in a waste of resources or a situation that threatens the safety of the support. The results of this research provide guidance for the prediction of contact loads between surrounding rock and primary support for dynamic tunnel construction.

Development of an Extended EDS Algorithm for CAN-based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

Evaluation of Muscle Activity and Foot Pressure during Gait, and Isokinetic Strength and Balance in Persons with Functional Ankle Instability (기능적 발목관절 불안정성의 등속성 근력과 균형 및 보행 중에 근활성도와 발바닥압의 평가)

  • Lee, Sun-Ah;Kim, Ah-Ram;Yoo, Kyung-Tae;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.3
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSE: The purpose of this study was to investigate and evaluate muscle activity and foot pressure during gait, and isokinetic strength and balance in persons with functional ankle instability (FAI). METHODS: Nine healthy subjects (CON, n=9) without FAI and 11 patients (FAI, n=11) with FAI participated in the study after having been screened with an ankle instability instrument and a balance error scoring system. In addition, FAI was classified as non-involved (FAI-N) or involved (FAI-I), and CON was classified as dominant or non-dominant. All subjects were evaluated for isokinetic strength (plantar flexion, dorsiflexion, inversion and eversion of $30^{\circ}/sec$ and $60^{\circ}/sec$), balance (static and dynamic), muscle activity (tibialis anterior, peroneus longus and gastrocnemius) and foot pressure (static and dynamic) during gait. RESULTS: Results showed that plantar flexion (p<.05), dorsiflexion (p<.05), inversion (p<.01) and eversion (p<.00) of $60^{\circ}/sec$ were significantly decreased in FAI-I compared to those in FAI-N and CON. C 90 of static balance with eyes open (p<.01) and closed (p<.00) were significantly increased in FAI compared to those in CON. Forward position of dynamic balance (p<.01) was significantly decreased in FAI compared to that in CON. Gastrocnemius and peroneus longus of dynamic muscle activity (p<.01), left and right weight distribution of static foot pressure (p<.00) and pressure distribution of dynamic foot pressure (p<.00) were significantly decreased in FAI-I compared to those in FAI-N. CONCLUSION: We demonstrated that ankle strength, balance, muscle activity and foot pressure were significantly correlated with FAI.

Transient response of a piezoelectric layer with a penny-shaped crack under electromechanical impacts

  • Feng, Wenjie;Li, Yansong;Ren, DeLiang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.163-175
    • /
    • 2006
  • In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic fracture behaviors of the crack tips.

Decaying temperature and dynamic response of a thermoelastic nanobeam to a moving load

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The decaying temperature and dynamic response of a thermoelastic nanobeam subjected to a moving load has been investigated in the context of generalized theory of nonlocal thermoelasticity. The transformed distributions of deflection, temperature, axial displacement and bending moment are obtained by using Laplace transformation. By applying a numerical inversion method, the results of these fields are then inverted and obtained in the physical domain. Also, for a particular two models, numerical results are discussed and presented graphically. Some specific and special results are derived from the current study.

Multicopter Position Control using Singular Perturbation based Dynamic Model Inversion (특이섭동 모델역변환을 이용한 멀티콥터 위치제어 연구)

  • Choi, Hyoung Sik;Jung, Yeondeuk;Lee, Jangho;Ryu, Hyeok;Lee, Sangjong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.276-283
    • /
    • 2017
  • This paper presents position control of multicopter using nonlinear dynamic model inversion in singular perturbation. Multicopter dynamics are developed and separated into the fast time-scale variables, related with the inner-loop design, and the slow time-scale variables, related with the outer-loop design. The final design is evaluated in 6-DOF simulation. The results show accurate position tracking performance.

Current-Mode Circuit Design using Sub-threshold MOSFET (Sub-threshold MOSFET을 이용한 전류모드 회로 설계)

  • Cho, Seung-Il;Yeo, Sung-Dae;Lee, Kyung-Ryang;Kim, Seong-Kweon
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.10-14
    • /
    • 2013
  • In this paper, when applying current-mode circuit design technique showing constant power dissipation none the less operation frequency, to the low power design of dynamic voltage frequency scaling, we introduce the low power current-mode circuit design technique applying MOSFET in sub-threshold region, in order to solve the problem that has large power dissipation especially on the condition of low operating frequency. BSIM 3, was used as a MOSFET model in circuit simulation. From the simulation result, the power dissipation of the current memory circuit with sub-threshold MOSFET showed $18.98{\mu}W$, which means the consumption reduction effect of 98%, compared with $900{\mu}W$ in that with strong inversion. It is confirmed that the proposed circuit design technique will be available in DVFS using a current-mode circuit design.