• 제목/요약/키워드: Dynamic interaction analysis

검색결과 1,012건 처리시간 0.026초

스폴링에 의한 AGT 시스템 교량의 충격에 관한 연구 (A Study on the Dynamic Impact of the AGT System Bridge, Caused by a Spall)

  • 우성원;윤석구;이안호;송재필
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.342-347
    • /
    • 2004
  • The dynamic responses of a PSC bridge for automated guide-way transit system are investigated by analytical approach of bridge-vehicle interaction. In this study, the dynamic responses, concerned with a spall on the surface of bridge are emphasized. A simply supported pre-stressed concrete bridge is adopted as a numerical example. Dynamics of three-dimensional dynamic interaction system between bridges and vehicles is considered in this study. The FE method and modal analysis is used for modeling a bridge for dynamic response analysis. An AGT vehicle is idealized as a model with 11DOFs including lateral motion. It was found that the dynamic responses of bridge can be affected by a spall of surface. Especially, the vibrations are increased much more when a spall is exist.

  • PDF

平坦氷荷重을 받는 細長形 해양구조물의 動的 거동 (Dynamic Responses of a Slender Offshore Structure Subject to Level Ice Load)

  • 최경식
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.156-166
    • /
    • 1995
  • Regrading the development of offshore natural gas field near Sakhalin Island which is an ice-infested area, this study aims to estimate the dynamic ice load for construction of offshore structures operating in this region. In this paper the design ice load and dynamic responses of a slender Arctic structure upon continuous ice movement are sutdied. Crushing agter a certain elastic deformation is assumed as a primary failure mechanism at the contact zone between semi-infinite level ice edge and the face of structure. Dynamic interaction forces are calculated using a modified Korzhavin's equation and a two-dimensional ice-structure interaction model is adopted. To verify the numerical model, dynamic analysis is performed for on of the Baltic Sea channel markers whose response patterns were presiously observed.

  • PDF

유연궤도를 고려한 자기부상열차 주행 시뮬레이션 (Simulation of a Maglev Vehicle Running on the Flexible Guideway)

  • 한형석;김영중;신병천;권정일
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.499-503
    • /
    • 2006
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses detailed 3D FE models, it is useful to analyze the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded that the simulation of dynamic interaction between the Maglev vehicle and the flexible guideway is possible and a potential of using computational mechanics.

궤도의 유연성을 고려한 자기부상열차 주행 시뮬레이션 (Simulation of the Maglev Running on the Flexible Guideway)

  • 한형석;김동성;이종민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.113-118
    • /
    • 2005
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore. an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controler design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses FEM, it is useful to calculate the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded, that the dynamic interaction between the maglev vehicle and the flexible guideway is possible.

  • PDF

Dynamic Condensation Method를 이용한 차량-교량계의 동적해석 (Dynamic Analysis of Vehicle-Bridge System by the Dynamic Condensation Method)

  • 한재익;이경동
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제2권2호
    • /
    • pp.177-184
    • /
    • 1998
  • The equation of motion on the vehicle-bridge system is established as the simultaneous equations which are combined the equation of vehicle and bridge by the interaction elements. A vehicle element is modeled as lumped masses supported by springs and dashpots, and a bridge element with pavement roughness is modeled as beam elements. An interaction element is defined to consist of a bridge element and the suspension units of the vehicle resting on the element. By the dynamic condensation method, the degrees of the freedom are eliminated, and compared with all the degrees of freedom on the bridge, the efforts of calculation is decreased. Thus, although a very small computational error is occured, the present technique appears to be computationally more efficient. It is particularly suitable for the simulation of bridges with a series of vehicles moving on the deck.

  • PDF

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • 제6권4호
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

지반-골조구조물 상호작용계의 3차원 정.동적 해석 (3-Dimensional Static and Dynamic Analysis of Soil-Framework Interaction System)

  • 서상근;장병순
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.243-254
    • /
    • 1997
  • 기초 지반상에 존재하는 3차원 골조구조물에 진동을 유발시키는 기계하중, 풍하중, 지진과 같은 동적 하중이 작용한다면, 지반-골조구조물 상호작용계의 동적거동을 해석하여야한다. 따라서, 본 연구에서는 실제 구조물에 근접한 기하학적 형상으로 이상화 시키기 위해, 슬래브와 기초판은 유연성을 갖는 4-절점 판요소, 보.기둥은 2-절점 보요소, 탄성지반은 8-절점 입체요소를 사용하여 유한요소법으로 3차원 상호작용계를 해석하였다. 본 연구의 목적은 지반-골조구조물 상호작용계의 동적 거동을 해석하기 위해, 동적 운동 방정식을 정리한 후 유한요소 프로그램으로 상호작용계의 동적 거동을 해석하는 것이다.

  • PDF

교량-AGT 차량 상호작용에 의한 교량의 동적응답 (Dynamic Response Analysis of Bridge-AGT Vehicle Interaction System)

  • 김현호;나상주;송재필
    • 한국철도학회논문집
    • /
    • 제9권5호
    • /
    • pp.561-568
    • /
    • 2006
  • Dynamic equations of motion for the interaction system of bridge and vehicle are derived to investigate the dynamic responses of bridge and vehicles induced by moving automated guide-way transit(AGT) vehicle and surface roughness of bridge. The vehicle model for ACT vehicle is idealized as 11 DOF including yawing, lateral translation and steering of wheels, and the bridges are modeled with finite element method. The AGT vehicle model was verified by experimental study. Parametric studies are carried out to investigate the effect of vehicle speed, surface roughness, stiffness and damping of the suspension system, AGT vehicles and dynamic wheel loads of the AGT vehicles. From the parametric study it can be seen that the dynamic incremental factor of the bridge and dynamic responses of vehicles have a tendency to increase with vehicle speeds, surface roughness and the stiffness of AGT vehicle suspension system. On the other hand those dynamic wheel loads have tendencies to decrease in according to increase of damping of the suspension system.

모드중첩법을 이용한 케이블지지교량의 3차원 교량-차량 상호작용 해석 (3D Bridge-Vehicle interaction Analysis of Cable-Supported Bridges Using Mode Superposition Method)

  • 이준석;임명훈;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.265-272
    • /
    • 2005
  • For bridge-vehicle interaction analysis of cable-supported brides, the superposition method is applied based on the results of 3-dimensional free vibration analysis using General-purpose FEM Software. This study firstly performs the eigenvalue analysis for the free vertical and the torsional vibration of bridges using FEM analysis. Next the equations of motion considering interaction between bridges and vehicles/train are derived from mode superposition method. And then dynamic analysis is performed using the Newmark numericial method. Finally through the numerical examples, the dynamic responses of cable-supported bridges by this study are presented and discussed.

  • PDF

Structure-soil-structure interaction in a group of buildings using 3D nonlinear analyses

  • Sharifi, Behroozeh;Nouri, Gholamreza;Ghanbari, Ali
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.667-675
    • /
    • 2020
  • The current study compares the effect of structure-soil-structure interaction (SSSI) on the dynamic responses of adjacent buildings and isolated structures including soil-structure interaction (SSI) with the responses of fixed-base structures. Structural responses such as the relative acceleration, displacement, drift and shear force were considered under earthquake ground motion excitation. For this purpose, 5-, 10- and 15-story structures with 2-bay moment resisting frames resting on shallow foundations were modeled as a group of buildings in soft soil media. Viscous lateral boundaries and interface elements were applied to the soil model to simulate semi-infinite soil media, frictional contact and probable slip under seismic excitation. The direct method was employed for fully nonlinear time-history dynamic analysis in OpenSees using 3D finite element soil-structure models with different building positions. The results showed that the responses of the grouped structures were strongly influenced by the adjacent structures. The responses were as much as 4 times greater for drift and 2.3 times greater for shear force than the responses of fixed-base models.