• Title/Summary/Keyword: Dynamic interaction

Search Result 1,835, Processing Time 0.025 seconds

Evaluation of Seismic Design Parameters for Nonstructural Components Based on Coupled Structure-Nonstructural 2-DOF System Analysis (구조물-비구조요소 2자유도 결합시스템 해석을 통한 비구조요소 내진설계변수 평가)

  • Bae, Chang Jun;Lee, Cheol-Ho;Jun, Su-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.105-116
    • /
    • 2022
  • Seismic demand on nonstructural components (NSCs) is highly dependent on the coupled behavior of a combined supporting structure-NSC system. Because of the inherent complexities of the problem, many of the affecting factors are inevitably neglected or simplified based on engineering judgments in current seismic design codes. However, a systematic analysis of the key affecting factors should establish reasonable seismic design provisions for NSCs. In this study, an idealized 2-DOF model simulating the coupled structure-NSC system was constructed to analyze the parameters that affect the response of NSCs comprehensively. The analyses were conducted to evaluate the effects of structure-NSC mass ratio, structure, and NSC nonlinearities on the peak component acceleration. Also, the appropriateness of component ductility factor (Rp) given by current codes was discussed based on the required ductility capacity of NSCs. It was observed that the responses of NSCs on the coupled system were significantly affected by the mass ratio, resulting in lower accelerations than the floor spectrum-based response, which neglected the interaction effects. Also, the component amplification factor (ap) in current provisions tended to underestimate the dynamic amplification of NSCs with a mass ratio of less than 15%. The nonlinearity of NSCs decreased the component responses. In some cases, the code-specified Rp caused nonlinear deformation far beyond the ductility capacity of NSCs, and a practically unacceptable level of ductility was required for short-period NSCs to achieve the assigned amount of response reduction.

Validation of the seismic response of an RC frame building with masonry infill walls - The case of the 2017 Mexico earthquake

  • Albornoz, Tania C.;Massone, Leonardo M.;Carrillo, Julian;Hernandez, Francisco;Alberto, Yolanda
    • Advances in Computational Design
    • /
    • v.7 no.3
    • /
    • pp.229-251
    • /
    • 2022
  • In 2017, an intraplate earthquake of Mw 7.1 occurred 120 km from Mexico City (CDMX). Most collapsed structural buildings stroked by the earthquake were flat slab systems joined to reinforced concrete (RC) columns, unreinforced masonry, confined masonry, and dual systems. This article presents the simulated response of an actual six-story RC frame building with masonry infill walls that did not collapse during the 2017 earthquake. It has a structural system similar to that of many of the collapsed buildings and is located in a high seismic amplification zone. Five 3D numerical models were used in the study to model the seismic response of the building. The building dynamic properties were identified using an ambient vibration test (AVT), enabling validation of the building's finite element models. Several assumptions were made to calibrate the numerical model to the properties identified from the AVT, such as the presence of adjacent buildings, variations in masonry properties, soil-foundation-structure interaction, and the contribution of non-structural elements. The results showed that the infill masonry wall would act as a compression strut and crack along the transverse direction because the shear stresses in the original model (0.85 MPa) exceeded the shear strength (0.38 MPa). In compression, the strut presents lower stresses (3.42 MPa) well below its capacity (6.8 MPa). Although the non-structural elements were not considered to be part of the lateral resistant system, the results showed that these elements could contribute by resisting part of the base shear force, reaching a force of 82 kN.

YY1 and CP2c in Unidirectional Spermatogenesis and Stemness

  • Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho;Kim, Chul Geun
    • Development and Reproduction
    • /
    • v.24 no.4
    • /
    • pp.249-261
    • /
    • 2020
  • Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula (Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정)

  • Kim, Kyeong-Dae;Kim, Ji-Tae;Ahn, Da-Vin;Park, Jung-Ho;Cho, Seung-Je;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

Vibration control in high-rise buildings with tuned liquid dampers - Numerical simulation and engineering applications

  • Zijie Zhou;Zhuangning Xie;Lele Zhang
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.91-103
    • /
    • 2023
  • Tuned liquid dampers (TLDs) are increasingly being used as efficient dynamic vibration absorbers to mitigate wind-induced vibration in super high-rise buildings. However, the damping characteristics of screens and the control effectiveness of actual structures must be investigated to improve the reliability of TLDs in engineering applications. In this study, a numerical TLD model is developed using computational fluid dynamics (CFD) and a simulation method for achieving the coupled vibration of the structure and TLD is proposed. The numerical results are verified using shaking table tests, and the effects of the solidity ratio and screen position on the TLD damping ratios are investigated. The TLD control effectiveness is obtained by simulating the wind-induced vibration response of a full-scale structure-TLD system to determine the optimal screen solidity ratio. The effects of the structural frequency, damping ratio, and wind load amplitude on the TLD performance are further analyzed. The TLD damping ratio increases nonlinearly with the solidity ratio, and it increases with the screens towards the tank center and then decreases slightly owing to the hydrodynamic interaction between screens. Full-scale coupled simulations demonstrated that the optimal TLD control effectiveness was achieved when the solidity ratio was 0.46. In addition, structural frequency shifts can significantly weaken the TLD performance. The control effectiveness decreases with an increase in the structural damping ratio, and is insensitive to the wind load amplitude within a certain range, implying that the TLD has a stable damping performance over a range of wind speed variations.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.

Ground response analysis of a standalone soil column model for IDA of piled foundation bridges

  • Hazem W. Tawadros;Mousa M. Farag;Sameh S.F. Mehanny
    • Earthquakes and Structures
    • /
    • v.24 no.4
    • /
    • pp.289-301
    • /
    • 2023
  • Developing a competent soil-bridge interaction model for the seismic analysis of piled foundation bridges is of utmost importance for investigating the seismic response and assessing fragility of these lifeline structures. To this end, ground motion histories are deemed necessary at various depths along the piles supporting the bridge. This may be effectively accomplished through time history analysis of a free-field standalone soil column extending from bedrock level to ground surface subjected to an input bedrock motion at its base. A one-dimensional site/ground response analysis (vide one-directional shear wave propagation through the soil column) is hence conducted in the present research accounting for the nonlinear hysteretic behavior of the soil stratum encompassing the bridge piled foundation. Two homogeneous soil profiles atop of bedrock have been considered for comparison purposes, namely, loose and dense sand. Analysis of the standalone soil column has been performed under a set of ten selected actual bedrock ground motions adopting a nonlinear time domain approach in an incremental dynamic analysis framework. Amplified retrieved PGA and maximum soil shear strains have been generally observed at various depths of the soil column when moving away from bedrock towards ground surface especially at large hazards associated with high (input) PGA values assigned at bedrock. This has been accompanied, however, by some attenuation of the amplified PGA values at shallower depths and at ground surface especially for the loose sand soil and particularly for cases with higher seismic hazards associated with large scaling factors of bedrock records.

Modeling and Implementation of Multilingual Meta-search Service using Open APIs and Ajax (Open API와 Ajax를 이용한 다국어 메타검색 서비스의 모델링 및 구현)

  • Kim, Seon-Jin;Kang, Sin-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.11-18
    • /
    • 2009
  • Ajax based on Java Script receives attention as an alternative to ActiveX technology. Most portal sites in korea show a tendency to reopen existing services by combining the technology, because it supports most web browsers, and has the advantages of such a brilliant interface, excellent speed, and traffic reduction through asynchronous interaction. This paper modeled and implemented a multilingual meta-search service using the Ajax and open APIs provided by international famous sites. First, a Korean query is translated into one of the language of 54 countries around the world by Google translation API, and then the translated result is used to search the information of the social web sites such as Flickr, Youtube, Daum, and Naver. Searched results are displayed fast by dynamic loading of portion of the screen using Ajax. Our system can reduce server traffic and per-packet communications charges by preventing redundant transmission of unnecessary information.

A Study on LIT Girder Performance Improvement (LIT 거더 성능 개선에 대한 연구)

  • Kim, Sung;Park, Sungjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.19-24
    • /
    • 2022
  • Conventional RC beams for crossing small and medium-sized rivers do not have a cross-sectional area, so the floating debris is accumulated and disasters such as damage to bridges occur. To improve this, the PSC method was invented. However, this also had problems such as transverse curvature, increase in dead weight due to cross-sectional shape, and negative moment generated during serialization, so it was necessary to develop a new type of girder. Therefore, it was intended to propose a LIT(Leton Interaction Thrust) girder bridge that is safer and has better performance than the conventional PSC girder with improved section efficiency. Unlike existing girder bridges, the LIT girder has the feature that the change in the strands of the entire girder occurs only in the vertical direction when the first tension is applied because the tendon arrangement is symmetrical by applying the raised portion. In addition, slab continuation generates a secondary moment that is advantageous to the continuous point, effectively controlling the negative moment and preventing the corrosion of the tendon. The dimensions of the cross section were determined, and the arrangement of the strands was designed to conduct structural analysis and detailed analysis. As a result of the structural analysis, the stress of the girder showed results within the allowable compressive stress, and the deflection showed the result within the allowable deflection. showed results. In addition, a detailed analysis was performed to examine the stress distribution around the girder body and the anchorage area and the stress distribution of the embossed portion, and as a result, the stress of the girder body due to the tension force showed a stable level.