• 제목/요약/키워드: Dynamic instabilities

검색결과 72건 처리시간 0.025초

An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

  • Gjelstrup, H.;Georgakis, C.T.;Larsen, A.
    • Wind and Structures
    • /
    • 제15권5호
    • /
    • pp.385-407
    • /
    • 2012
  • Bridge hanger vibrations have been reported under icy conditions. In this paper, the results from a series of static and dynamic wind tunnel tests on a circular cylinder representing a bridge hanger with simulated thin ice accretions are presented. The experiments focus on ice accretions produced for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between $-5^{\circ}C$ and $-1^{\circ}C$. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3-DOF quasi-steady galloping instability model, which accounts for sectional axial rotation. A comparison between the 3-DOF model and the instabilities found through two degree-of-freedom (2-DOF) dynamic tests is presented. It is shown that, although there is good agreement between the instabilities found through use of the quasi-steady theory and the dynamic tests, discrepancies exist-indicating the possible inability of quasi-steady theory to fully predict these vibrational instabilities.

Dynamic Response of Blade Surface Cavitation

  • Toyoshima, Masakazu;Sakaguchi, Kimiya;Tsubouchi, Kota;Horiguchi, Hironori;Sugiyama, Kazuyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.160-168
    • /
    • 2016
  • In high speed turbopumps, cavitation occurs and often causes the flow instabilities such as cavitation surge and rotating cavitation. The occurrence of these cavitation instabilities is considered to relate to dynamic characteristics of the cavitation, which are modelled using a cavitation compliance and a mass flow gain factor. Various types of cavitation such as a blade surface cavitation, a tip leakage vortex cavitation, and a backflow vortex cavitation occur at the same time in the inducer and the dynamic characteristics of each cavitation have not been clarified yet in experiments. Focusing on the blade surface cavitation as one of fundamental cavitation, we investigated the dynamic characteristics of the blade surface cavitation on a flat plate hydrofoil in experiments in the present study.

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

기체 중심 스월 동축형 분사기가 장착된 모형연소기의 운동량비 변화에 따른 연소불안정성 분석 (Effect of Momentum Flux Ratio on Combustion Instabilities in a Model Combustor with a Gas-Centered Swirl Coaxial Injector)

  • 손채훈;김명섭;;윤영빈
    • 한국추진공학회지
    • /
    • 제24권4호
    • /
    • pp.25-32
    • /
    • 2020
  • 모형 연소기에서 동축형 분사기에 의한 연소불안정성을 운동량비 변화에 따라 수치적으로 분석하였다. 실제 로켓 엔진의 경계조건을 기반으로 총 5개의 운동량비를 선택하였다. 운동량비가 증가할수록 분사기 출구에서의 확산각도는 감소하는 경향을 보였으며, 축방향 운동량이 증가할수록 연소기 내부의 압력진폭이 크게 감소함을 확인하였다. 동적 모드 분해 기법(dynamic mode decomposition)을 통해 연소기내의 음향 모드를 파악하였고 관심 섭동 주파수를 갖는 2L 모드(mode)의 감쇠계수를 구하고 이를 통해 운동량비가 증가할수록 연소기의 안정성이 증가함을 보였다.

요소 연결 매개법을 이용한 선형 구조물의 동적 컴플라이언스 최적화 (Element Connectivity Based Topology Optimization for Linear Dynamic Compliance)

  • 윤길호
    • 한국전산구조공학회논문집
    • /
    • 제22권3호
    • /
    • pp.259-265
    • /
    • 2009
  • 본 연구 논문에서는 요소 연결 매개법(Element Connectivity Parameterization Method)을 이용하여 선형 구조물의 동적 컴플라이언스(Dynamic compliance)를 최소화하는 위상을 설계하는 기법을 연구한다. 기존의 밀도를 기반으로 한 위상최적화기법은 각 유한 요소의 탄성계수를 각 요소에 정의되어 있는 설계변수(Design Variable)를 이용하여 위상최적화를 수행한다. 이 방법은 현재까지 많은 선형구조문제에 적용되었지만 비선형 문제와 멀티피직스 시스템에서 수치적인 문제점이 보고되었다. 이런 문제점을 근본적으로 해결하기 위하여 최근에 요소 연결 매개법(Element Connectivity Parameterization Method)이란 새로운 최적화 기법이 개발되었다. 이 새로운 설계 방법은 요소의 강성을 설계하는 것이 아니라 요소의 연결성을 설계하는 기법으로 이를 이용하여 비선형 구조물이나 멀티피직스 시스템의 위상최적화를 효과적으로 수행할 수 있다. 하지만, 아직까지 질량 행렬의 정의에 대한 모호함으로 인하여 동적인 구조물의 최적화에 대한 연구가 많이 이루어지지 않았다. 이런 문제점을 해결하기 위하여 요소 연결 매개법에서 질량행렬을 정의하는 방법을 연구하며, 이를 이용하여 선형 구조물의 동적 컴플라이언스(Dynamic Compliance)를 고려한 위상최적화 문제에 적용하여 제안된 방법을 검증하였다.

터빈 결합 환경의 가스발생기 동적 연소 특성 (Combustion Dynamics of a Gas Generator Assembled with a Turbine Manifold)

  • 서성현;임병직;안규복;이광진;김종규;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.121-124
    • /
    • 2008
  • 본 논문에서 연료 과농 가스발생기의 동적 연소 특성을 수록하였다. 연소실과 추진제 매니폴드 내에서 발생하는 압력 섭동을 계측하여 데이터 분석을 실시하였다. 단독 연소 시험에서는 연소압에 관계없이 연소가 안정적으로 이루어졌으나 터빈 매니폴드 장착의 경우, 산소 임계 압력에 해당하는 50 bar이하의 저압 조건에서 저주파 연소 불안정이 발생하는 것을 확인하였다. 이는 연소실 특성 길이 증가에 의한 축방향 연소 불안정으로 여겨지며, 연소압 증가에 따라 압력 섭동이 증가함을 확인하였다.

  • PDF

AN EVALUATION OF THE APERIODIC AND FLUCTUATING INSTABILITIES FOR THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN INTEGRAL REACTOR

  • Kang Han-Ok;Lee Yong-Ho;Yoon Ju-Hyeon
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.343-352
    • /
    • 2006
  • Convenient analytical tools for evaluation of the aperiodic and the fluctuating instabilities of the passive residual heat removal system (PRHRS) of an integral reactor are developed and results are discussed from the viewpoint of the system design. First, a static model for the aperiodic instability using the system hydraulic loss relation and the downcomer feedwater heating equations is developed. The calculated hydraulic relation between the pressure drop and the feedwater flow rate shows that several static states can exist with various numbers of water-mode feedwater module pipes. It is shown that the most probable state can exist by basic physical reasoning, that there is no flow rate through the steam-mode feedwater module pipes. Second, a dynamic model for the fluctuating instability due to steam generation retardation in the steam generator and the dynamic interaction of two compressible volumes, that is, the steam volume of the main steam pipe lines and the gas volume of the compensating tank is formulated and the D-decomposition method is applied after linearization of the governing equations. The results show that the PRHRS becomes stabilized with a smaller volume compensating tank, a larger volume steam space and higher hydraulic resistance of the path $a_{ct}$. Increasing the operating steam pressure has a stabilizing effect. The analytical model and the results obtained from this study will be utilized for PRHRS performance improvement.

An Outlook on Rotordynamic Pump Theory Development

  • Ni, Yongyan;Pan, Zhongyong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.99-118
    • /
    • 2017
  • ECHO progress was defined to depict the rotordynamic pump theory development. Experience (E) era for pumps lasted nearly one and a half hundred years before the Industrial Revolution due to the low rotation speed of motor and undeveloped manufacture ability. Classic (C) theory referring to quasi-static performance as well as the items those were not able to be steadily resolved under the level were briefly and sophisticated outlined. Since 1962, flow instabilities and the dynamic responses had come into main attention with the development of the modern technologies such as ballistic missile, rocket and space shuttle main engine, and were finally heuristically (H) elucidated by talented scholars and researchers. Recently, new applications for the pumps open (O) to the surrounding fluid and diversity of the medium such as multiphase flow need more studies and some examples were briefly introduced to display the potential problems lastly.