• 제목/요약/키워드: Dynamic geometry

검색결과 513건 처리시간 0.026초

IMAGE SYNTHESIS FOR DYNAMIC SCENES

  • Feng, Chen-Chin;Chang, Su-Yuan;Yang, Shi-Nine
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 KOBA 방송기술 워크샵 KOBA Broadcasting Technology Workshop
    • /
    • pp.15.1-21
    • /
    • 1999
  • Radiosity method is a global illumination model for image synthesis. It computes all energy interactions among diffuse elements in a virtual environment. One of the major drawbacks if its time consuming computation. Existing radiosity algorithms for static scene is difficult to be applicable to dynamic environments. In this paper we proposed an hierarchical scene partition scheme to speedup the link update computations in the dynamic environments. Since the proposed spatial data structure is global, it not only can be used to speedup the culling of non-affected links after geometry change, but also can be used to accelerate the subsequent visibility computation. Several empirical tests are given to show the efficiency of our improved algorithm.

웹 환경에서 동적기하 프로그램의 비교 연구

  • 김부윤;정재훈
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.383-410
    • /
    • 2004
  • DGS(dynamic Geometry System)와 WBI(Web Based Instruction)를 고찰해보고, 동적 기하 프로그램의 대표적인 프로그램인 GSP, Cabri, Cinderella를 이용하여 WBI를 제작해 보고 웹 환경 하에서 세 프로그램의 효율성을 비교 ${\cdot}$ 분석하였으며, 이들 세 프로그램의 장점을 정리하여 웹 환경에서 동적 기하 프로그램의 개선 방향을 제시하였다.

  • PDF

철도차량 동특성 해석을 위한 휠/레일 상호작용의 선형모델링 연구 (A Study on the Linear Modeling of Wheel/Rail Interaction for the Train Dynamics)

  • 박찬경;박기준;박준서;배대성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.517-524
    • /
    • 1998
  • A liner numerical model of the wheel-rail interation and the track geometry is developed for multi-body dynamics program. The simulation results are very simulation to these of VAMPIRE simulation. This program can be used for the analysis of train dynamic performance.

  • PDF

디지털 오너먼트의 패턴생성기법 및 표현특성 연구 (A Study of Pattern Generation Technique & Expressive Characteristics of Digital Ornament)

  • 한혜신;김문덕
    • 한국실내디자인학회논문집
    • /
    • 제19권5호
    • /
    • pp.83-94
    • /
    • 2010
  • Conventionally, ornament has developed around linear thinking based on Euclidean geometry, and been explained as simple and lucid natural Euclidean geometrical phenomena. The modular arrangement with vertical, horizontal and diagonal grids has been an organizing principle of classical ornament, but in digital era ornament is found not to be explained only with the principle of traditional arrangement due to the seemingly irregular complex forms. In that sense, this study presents the concept of digital ornament and examined the backgrounds of ornament in digital age, that are complex system and non-Euclidean geometry. Accordingly, the present study takes an approach by dividing new formal types of ornament into algorithmic form, hybrid form and dynamic form to find out a principle of pattern organization. Lately, architects who actively use computer for their architectural designs take the algorithmic strategies in nature and create various and complex patterns by simple rules. The patterns are not the repetition of the same, but the production of singularities. In addition, hybrid form by morphing shows a topologically flexible evolutionary transformation, and is used to create in-between transitional shapes from the source to target. Finally, the patterns by the interaction between the system components which are corresponded to the embedded forces emerge from dynamic simulation of the natural environment. Rather than objects itself, focus is given to the process of generating forms, and the ornamental patterns as the revelation of such implicit order provide not just the formal beauty but also spatial pathways for lights and air, maximizing the effects of lights.

공기 베어링 주축의 자동설계시스템 개발 (Development of the Automated Calculation System for Air-Bearing Spindle)

  • ;정원지;;김대성;이춘만
    • 한국공작기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.38-48
    • /
    • 2004
  • Recently the use of high-speed equipment in machine-tool industry has greatly increased, which requires the development of prognostics and prediction methods on the design stage. Conversion of the test/experiments stage from real to virtual reality will not only significantly reduce the design and manufacturing cost, but will also increase design quality. This paper shows how it is possible to develop the automated system for the design calculations of the air-bearing spindles. First, the general calculation method is introduced. It contains several steps, namely, geometry identification, pressure calculation, stiffiness calculation, dynamics characteristics calculation. For geometry identification reducing spindle shaft to rings was proposed, which helps to automate the calculation process. For pressure calculation the Peshti method was implemented. For stiffiness calculation the analysis was made, which shown the necessity of correct calculation step selection. Then the system of ordinary differential equations containing influence coefficients was evolved, which is used for trjectories calculation. The graphical representation of the calculation results shows the dynamic behavior of the spindle unit concerning various working conditions. Finally, this automated system is illustrated by an example of the air-bearing spindle calculation.

우리나라 수학교육에서 공학 활용의 역사와 현황 (Trend and Prospect on Using Technology in Mathematics Education in Korea)

  • 손홍찬
    • 대한수학교육학회지:학교수학
    • /
    • 제13권3호
    • /
    • pp.525-542
    • /
    • 2011
  • 이 논문에서는 우리나라 학교수학의 교수 학습에서 가장 많이 사용되고 있는 공학적 도구들로 스프레드시트인 엑셀, 역동적 기하 소프트웨어인 GSP, Cabri, 그리고 CAS를 중심으로 이것들이 수학교육에서 활용되어온 역사와 특징 그리고 그것이 미친 영향을 살펴본다. 그리고 우리나라 수학교육에서 공학적 도구의 활용을 교육과정상의 변화, 교과서에서의 변화, 현직교사의 연수와 예비교사의 교육과정, 그리고 교실 등의 물리적 환경 등을 통하여 그 현황을 파악하고 미래의 수학교육에서 공학활용에 대한 방향을 제시한다.

  • PDF

수직장애물 환경 주행 능력향상을 위한 소형 UGV 플랫폼 설계 (Development of a Small UGV for Vertical Obstacle Negotiation)

  • 김지철;박종원;백주현;유재관;김범수;김수현
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1166-1173
    • /
    • 2011
  • There have been many researches about SUGV (Small Unmanned Ground Vehicle) mechanism regarding off-road mobility and obstacle negotiation. This paper introduces an analysis of geometry parameters to enhance the vertical obstacle negotiation ability for the SUGV. Moreover, this paper proposes an anti-shock structure analysis of wheels to protect the main body of the SUGV when it falls off a vertical obstacle. Major system geometry parameters will be determined under certain constraints. The constraints and optimization problem for maximizing the ability of vertical obstacle negotiation will be presented and discussed. Dynamic simulation results and experiments with manufactured platform will also be presented to validate the analysis. Several types of wheel materials and structures will be compared to determine the best anti-shock wheel design through FEM (Finite Element Method) simulations.

초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가 (Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk)

  • 차도진;김동권;김영득;배원병;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

Free vibration analysis of nonlocal viscoelastic nanobeam with holes and elastic foundations by Navier analytical method

  • Ola A. Siam;Rabab A. Shanab;Mohamed A. Eltaher;Norhan A. Mohamed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권3호
    • /
    • pp.257-279
    • /
    • 2023
  • This manuscript is dedicated to deriving the closed form solutions of free vibration of viscoelastic nanobeam embedded in an elastic medium using nonlocal differential Eringen elasticity theory that not considered before. The kinematic displacements of Euler-Bernoulli and Timoshenko theories are developed to consider the thin nanobeam structure (i.e., zero shear strain/stress) and moderated thick nanobeam (with constant shear strain/stress). To consider the internal damping viscoelastic effect of the structure, Kelvin/Voigt constitutive relation is proposed. The perforation geometry is intended by uniform symmetric squared holes arranged array with equal space. The partial differential equations of motion and boundary conditions of viscoelastic perforated nonlocal nanobeam with elastic foundation are derived by Hamilton principle. Closed form solutions of damped and natural frequencies are evaluated explicitly and verified with prestigious studies. Parametric studies are performed to signify the impact of elastic foundation parameters, viscoelastic coefficients, nanoscale, supporting boundary conditions, and perforation geometry on the dynamic behavior. The closed form solutions can be implemented in the analysis of viscoelastic NEMS/MEMS with perforations and embedded in elastic medium.