• 제목/요약/키워드: Dynamic geometry

검색결과 513건 처리시간 0.022초

대전인체의 정전기 방전에 대한 동적해석 - 준정적해석과의 비교 (Dynamic analysis of charged human body electrostatic discharge - comparison with quasi-static discharge)

  • 이종호;김두현;김상철;김상렬
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1998년도 춘계 학술논문발표회 논문집
    • /
    • pp.257-262
    • /
    • 1998
  • In order to understand the characteristics of electrostatic discharge (ESD) by a charged human body, a dynamic analysis method based on RCL circuit and a quasi-static analysis method based on two-body model are introduced. In this paper, these methods calculate waveforms, discharge energy and potential difference to analyze the ESD phenomena from given initial conditions and geometry. Results are compared and discussed.

  • PDF

프랙탈 기하학을 활용한 현대건축의 유기적 표현특성에 관한 연구 (A Study on the Characteristics of Organic Expression in Contemporary Architecture with Fractal Geometry)

  • 노정하;이근택;홍현진
    • 대한건축학회논문집:계획계
    • /
    • 제35권4호
    • /
    • pp.25-36
    • /
    • 2019
  • Contemporary architecture is showing its deconstruction and departure from modern architecture based on rationality, such as reductionism or virtualism. This means a shift from a mechanistic and ecological world view to an organic and ecological view, from a deterministic reason to a reason for a possible secret static. This study examines the potential of fractals, a scientific theory of complexity that is emerging as a new paradigm in the 21st century, as an appropriate alternative to contemporary complexity architecture. The method and scope of this study were understood and its features were identified through literature and data research and prior study review. Based on the organic nature of fractal geometry, we analyzed the works of contemporary architects(Frank Gehry, Bernard Tschumi, Steven Holl, Zaha Hadid, Rem Koolhaas, Daniel Libeskind, Zvi Hecker, Ito Toyo) and studied the possibility of architectural design using the principle of fractal. As a result, fractal geometry, similar to the patterned order of nature, has an infinite set of organizational functionalities in architecture and can be applied in various aspects of design analysis. Architectural designs based on the fractal theory will require more research and development to realize dynamic design representation using digital computers.

초기 처짐을 갖는 Spherical Shell의 동적 특성에 관한 연구(II) - 초기 처짐에 따른 동적 특성 - (Dynamic Characteristics Analysis of Spherical Shell with Initial Deflection(II) - Effects of Initial Deflection -)

  • 조진구
    • 한국농공학회지
    • /
    • 제40권5호
    • /
    • pp.91-99
    • /
    • 1998
  • The widespread use of thin shell structures has created a need for a systematic method of analysis which can adequately account for arbitrary geometric form and boundary conditions as well as arbitrary general type of loading. Therefore, the stress and analysis of thin shell has been one of the more challenging areas of structural mechanics. A wide variety of numerical methods have been applied to the governing differential equations for spherical and cylindrical structures with a few results applicable to practice. The analysis of axisymmetric spherical shell is almost an every day occurrence in many industrial applications. A reliable and accurate finite element analysis procedure for such structures was needed. Dynamic loading of structures often causes excursions of stresses well into the inelastic range and the influence of geometry changes on the response is also significant in many cases. Therefore both material and geometric nonlinear effects should be considered. In general, the shell structures designed according to quasi-static analysis may fail under conditions of dynamic loading. For a more realistic prediction on the load carrying capacity of these shell, in addition to the dynamic effect, consideration should also include other factors such as nonlinearities in both material and geometry since these factors, in different manner, may also affect the magnitude of this capacity. The objective of this paper is to demonstrate the dynamic characteristics of spherical shell. For these purposes, the spherical shell subjected to uniformly distributed step load was analyzed for its large displacements elasto-viscoplastic static and dynamic response. Geometrically nonlinear behaviour is taken into account using a Total Lagrangian formulation and the material behaviour is assumed to elasto-viscoplastic model highly corresponding to the real behaviour of the material. The results for the dynamic characteristics of spherical shell in the cases under various conditions of base-radius/central height(a/H) and thickness/shell radius(t/R) were summarized as follows : The dynamic characteristics with a/H. 1) AS the a/H increases, the amplitude of displacement in creased. 2) The values of displacement dynamic magnification factor (DMF) were ranges from 2.9 to 6.3 in the crown of shell and the values of factor in the mid-point of shell were ranged from 1.8 to 2.6. 3) As the a/H increases, the values of DMF in the crown of shell is decreased rapidly but the values of DMF in mid-point shell is increased gradually. 4) The values of DMF of hoop-stresses were range from 3.6 to 6.8 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.3 to 2.6, and the values of DMF of stress were larger than that of displacement. The dynamic characteristics with t/R. 5) With the thickness of shell decreases, the amplitude of the displacement and the period increased. 6) The values of DMF of the displacement were ranged from 2.8 to 3.6 in the crown of shell and the values of factor in the mid-point of shell were ranged from 2.1 to 2.2.

  • PDF

복사열전달이 고체 추진제의 동적소화에 미치는 영향 (The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants)

  • 정호걸;이창진
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.72-79
    • /
    • 2003
  • 고체 추진제의 소화를 위한 연소실 압력 강하시 금속입자들에 의한 복사열전달에 동적소화에 미치는 영향을 알아보았다. AP:Binder의 화학반응으로 발생하는 전도열 플럭스를 구하기 위해 화염모델을 사용하였으며, 금속입자들에 복사열 플럭스를 구하기 위해 연소흐름 모델을 사용하였다. 연소실은 크기가 무한대인 경우와 노즐에 의해 제한된 형태 두 가지를 선택하여 계산을 수행하였다. 계산에 사용된 추진제 조성을 AP:Al:CTPB=76:10:14이며 최종압력 이후, 총 열 플럭스 중 복사열 플럭스가 차지하는 비중은 5~6%정도로 나타났다. 연소실 크기가 무한대인 경우, 복사열전달을 고려한 경우의 임계 압력강하율이 복하열을 고려하지 않은 경우보다 45% 크게 나타났다. 이는 복사열전달이 동적소화에 큰 영향을 미치는 것을 보여주는 것이다.

GeoGebra를 활용한 역동적인 시각적 표상에 기반한 이차곡선 지도 방안 (Instruction method for Quadratic Curve Based on Dynamic Visual Representation by applying GeoGebra)

  • 양성현;강옥기
    • 대한수학교육학회지:학교수학
    • /
    • 제13권3호
    • /
    • pp.447-468
    • /
    • 2011
  • 고등학교 수학교과과정에서 이차곡선에 관련된 단원의 지도는 다른 어떤 단원보다도 연결성이 고려된 지도가 필요한 단원이다. 다시 말해 대수적 접근 방식과 기하적 접근 방식이 동시에 병렬적으로 지도되어야 한다. 특히 대수적 조작력이 미흡한 하위권 학생들에게는 이차곡선에 대한 성질을 역동적으로 표현하는 시각적 표상을 심어주는 기하적 접근 방식이 더욱 중요하다. 이를 위하여 본 연구는 이차곡선의 지도에 있어서 GeoGebra에 기반한 역동적인 시각적 표상의 중요성을 제안하고자 현행 고등학교 '기하와 벡터' 10종의 교과서와 익힘책의 이차곡선 단원 중 포물선에 관련된 부분을 분석하여 시각적 표상을 극대화할 수 있는 지도 방안을 제안하는 실험적 수업을 진행하고 학생들의 표상의 변화를 분석하였다.

  • PDF

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

동적광탄성 실험에 의한 응력이완 노치부근에서의 접촉특이응력해석 (Contact Singular Stress with Relief Notch by Using Dynamic Photoelasticity)

  • 이억섭;황시원;나경찬
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.55-62
    • /
    • 1996
  • The dynamic photoelastic technique has been utilized to investigate the possibility of relieving the large local singular stresses which are induce in the corner of a right angled indenter. The indenter compresses a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effect of geometric changes to the indenter in terms of the diameter (d) and the location (ℓ) of the notch on the relieving of the dynamic contact stresses are investigated. A multi-spark-high speed camera with twelve sparks was used to take dynamic photographs. The contact singular stresses were found to be released by introducing the relief notch along the indenter. The optimal location and geometry of the relief notch need further experimental investigation.

  • PDF

Dynamic response of steel-concrete composite bridges loaded by high-speed train

  • Podworna, Monika
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.179-196
    • /
    • 2017
  • The paper focuses on dynamic analyses of a series of simply-supported symmetric composite steel-concrete bridges loaded by an ICE-3 train moving at high speeds up to 300 km/h. The series includes five bridges with span lengths ranging from 15 m to 27 m, with repeatable geometry of the superstructures. The objects, designed according to Polish standards valid from 1980s to 2010, are modelled on the bridges serviced on the Central Main Line in Poland since 1980s. The advanced, two-dimensional, physically nonlinear model of the bridge-track structure-high-speed train system takes into account unilateral nonlinear wheel-rail contact according to Hertz's theory and random vertical track irregularities equal for both rails. The analyses are focused on the influence of random track irregularities on dynamic response of composite steel-concrete bridges loaded by an ICE-3 train. It has been pointed out that certain restrictions on the train speed and on vertical track irregularities should be imposed.

비선형 헤르쯔 접촉스프링과 변위제한조건식의 적용에 의한 차량-궤도-교량 동적상호작용 수치해석기법 (Simulation of Vehicle-Track-Bridge Dynamic Interaction by Nonlinear Hertzian Contact Spring and Displacement Constraint Equations)

  • 정근영;이성욱;민경주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.191-196
    • /
    • 2005
  • In this study, to describe vehicle-track-bridge dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are introduced. In this approach external loads acting on 1/4 vehicle model are self weight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by Penalty method. Also, to improve the numerical stability and to maintain accuracy of solution, the artificial damper and the reaction from constraint violation are introduced. A nonlinear time integration method, in this study, Newmark method is adopted for both equations of vehicles and structure. And to reduce the error caused by inadequate time step size, adaptive time-stepping technique is partially introduced. As the nonlinear Hertzian contact spring has no resistance to tensile force, the bouncing phenomena of wheelset can be described. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems.

  • PDF

반능동현가장치용 전자제어식 연속가변댐퍼의 모델링 및 동특성 해석 (Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve)

  • 도홍문;홍경태;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.158-166
    • /
    • 2002
  • A mathematical model and dynamic characteristics ova continuously variable damper for semi-active suspen- sion systems are investigated. After analyzing the geometry of a typical continuously variable damper, mathematical models fur individual components including piston, orifices, spring, and valves are first derived and then the flow equations for extension and compression strokes are investigated. To verify the developed mathematical model, the dynamic response of the model are simulated using MATLAB/SIMULINK and are compared with experimental results. The proposed model can be used not only for mechanical components design but also for control system design.