• 제목/요약/키워드: Dynamic fracture

검색결과 520건 처리시간 0.032초

다양한 노치 반경을 갖는 17-4PH강의 동적균열개시 특성 (Dynamic Crack Initiation of 17-4PH Casting Steel for Various Notch Radius)

  • 박성욱;김덕회;김재훈;문순일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.160-163
    • /
    • 2003
  • 본 논문에서는 17-4PH강의 동적파괴인성을 노치시편의 겉보기 동적파괴인성으로부터 평가하고자 한다. 0.1mm∼4mm의 다양한 노치반경을 갖는 시험편을 이용하였다. 임계노치반경 이상에서는 노치 반경이 증가할수록 겉보기 동적파괴인성도 증가하는 결과를 보인다. 노치시편을 이용하여 측정한 겉보기 동적파괴인성으로부터 동적파괴인성을 예측할 수 있다.

  • PDF

NRC 증기압 암석 파쇄제에 의한 PMMA 블록의 동적 파괴 과정에 관한 실험 및 수치해석적 연구 (Experimental and Numerical Study on the Dynamic Fracture Processes of PMMA Block by NRC Vapor Pressure Fracture Agent)

  • 민경조
    • 한국방재안전학회논문집
    • /
    • 제16권1호
    • /
    • pp.91-103
    • /
    • 2023
  • 본 연구의 목적은 테르밋 반응으로 결정화된 액체혼합물을 순간적으로 기화시켜, 이에 따라 발생되는 증기압을 이용하여 암석 및 콘크리트를 파쇄시키는 Nonex Rock Cracker(NRC) 암석 파쇄제의 동적 파괴 특성을 분석하고 파괴패턴을 예측할 수 있는 해석기법을 개발하기 위함이다. NRC 암석 파쇄제의 순간적의 증기압 발생 특성을 분석하기 위하여 인공취성재료로 알려진 Polymethyl methacrylate(PMMA) 블록을 대상으로 NRC를 장전하여 파쇄시험을 수행하였다. NRC의 증기압 발생순간을 촬영하기 위하여 초고속 카메라를 활용하였으며, 장약실과 연결된 관측공에 동적압력게이지를 부착하여 장약공 압력-시간이력을 계측하였다. 증기압 암석 파쇄제에 의한 PMMA 블록의 파괴패턴을 모사하기 위하여 2차원 동적 파괴 과정 해석 기법인 2D Dynamic Fracture Process Analysis(2DDFPA)가 활용되었으며, 계측된 장약공 압력-시간이력을 고려한 입사압력함수를 결정하였다. 제안된 해석조건을 활용하여 화강암재료와 고성능 폭약에 의하여 발생될 수 있는 파괴패턴에 대하여 고찰하였다.

고속철도용 윤축의 정${\cdot}$동적파괴인성 평가 (Static and Dynamic Fracture Toughness of Wheelset for High Speed Train)

  • 권석진
    • 한국철도학회논문집
    • /
    • 제8권3호
    • /
    • pp.210-215
    • /
    • 2005
  • The safety evaluations of railway wheelsets make use of the static fracture toughness obtained in ingot materials. The static fracture toughness of wheelset materials has been extensively studied by experiments, but the dynamic fracture toughness with respect to wheelset materials has not been studied enough yet. It is necessary to evaluate the characteristics of the fracture mechanics depending on each location for a full-scale wheelset for high-speed trains, because the load state for each location of the wheelset while running is different the contact load between the wheel and rail, cyclic stress in the wheel plate, etc. This paper deals with the fracture toughness depend on load rates. The fracture toughness depending on load rate data shows that once the downward curve from quasi-static values was reached, subsequent values showed a slow increase with respect to the impact velocity. This means that dynamic fracture toughness should be considered in the design code of the wheelset material.

計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성 (The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • 제3권2호
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

수지함량에 따른 CFRP 적층판의 층간파괴 인성평가 (Evaluation of Fracture Toughness of Dynamic Interlaminar for CFRP Laminate Plates by Resin Content)

  • 김지훈;양인영;심재기
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.43-49
    • /
    • 2003
  • This research work has been carried out for finding J-integral in mode II of CFRP(carbon fiber reinforced plastics) laminate plates based on the classical bar theory in dynamic conditions with consideration of the effect of inertia forces, eventually to lead to finding the dynamic inter-layer fracture toughness. Dynamic inter-layer fracture toughness was found by a self-made ENF(End Notched Flexure) experimental apparatus using Split Hopkinson's Bar(SHPB), and also observed the variation of the fracture toughness haying different resin contents and fiber arrangements of CFRP specimen([$0_3^{\circ}/90_3^{\circ}/0_6^{\circ}/90_3^{\circ}/0_3^{\circ}$], [$0_{20}^{\circ}$], [$0_5^{\circ}/90_{10}^{\circ}/0_5^{\circ}$]). As an experimental result, in either cases of quasi-static or dynamic load condition, the critical load and the inter-layer fracture toughness increased sharply depending on the increase of resin contents. Therefore, it could, be concluded that the effect by resin contents is the major factor determining the inter-layer fracture toughness in the CFRP laminate plates.

세브론노치 세라믹시편을 이용한 동적파괴인성측정 (Measurement of Dynamic Fracture Toughness Using Chevron Notched Ceramic Specimen)

  • 이연수;이영선;박래석;문영득;윤회석
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.98-104
    • /
    • 2001
  • A dynamic fracture toughness test method with a chevron notched ceramic specimens is proposed. The notch angles of the chevron specimens were 90, 100$^{\circ}$and 110$^{\circ}$. Finite element analysis(FEA) were done to determine the geometrical properties of chevron-notch specimens according to notch angles. The static fracture toughness of the chevron notched alumina specimen was 3.8MP$\alpha$√m similar to that of the general fracture specimen with a precrack. Dynamic fracture toughness was 4.5 MP$\alpha$√m slightly higher than the static one. These research showed the possibility of the split Hopkinson pressure bar test method using the newly proposed chevron notched specimens to get the dynamic fracture toughness of extremely brittle materials such as ceramics.

  • PDF

유효거리를 이용한 연소기관 노치부의 파손기준 해석 (Analysis of Failure Criterion for Combustion Pipe with Notch using Effective Distance)

  • 김덕회;김재훈;문순일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1-6
    • /
    • 2004
  • In this study, the intrinsic static/dynamic fracture toughness of Al 7175=T74 is evaluated from the apparent static/ dynamic toughness of notched specimen, The critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. Also, effective distance is applied to estimate the failure criterion for the combustion pipe with notch. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, the effective In this study, the intrinsic static/dynamic fracture toughness of Al 7175=T74 is evaluated from the apparent static/ dynamic toughness of notched specimen, The critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. Also, effective distance is applied to estimate the failure criterion for the combustion pipe with notch. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, the effective distance can be used to evaluate the failure criterion of structure with notch.

  • PDF

WL-RDCB 시편의 동적 균열전파속도와 동적 응력확대계수 (Dynamic Stress Intensity Factors and Dynamic Crack Propagation Velocities in Polycarbonate WL-RDCB Specimen)

  • 정석주;한민구
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.3-9
    • /
    • 1996
  • Dynamic fracture characteristics of Polycarbonate WL-RDCB specimen were investigated. The dynamic crack propagation velocities in these specimens were measured by using both high speed camera system and silver paint grid method developed and justified in the INHA Fracture Mechanics Laboratory. The measured crack propagation velocities were fed into the INSAMCR code(a dynamic finite element code which has been developed in the INBA Fracture Mechanics Laboratory) to extract the dynamic stress intensity factors. It has been confirmed that both dynamic crack arrest toughness and the static crack arrest toughness depend on both the geometry and the dynamic crack propagation velocity of specimens. The maximum dynamic crack propagation velocity of Polycarbonate WL-RDCB specimen was found to be dependent on the material property, geometry and the type of loading. The dynamic cracks in these Polycarbonate WL-RDCB specimens seemed to propagate in a successive manner, involving distinguished 'propagation-arrest-propagation-arrest' steps on the microsecond time scale. It was also found that the relat-ionship between dynamic stress intensity factor and dynamic crack propagation velocities might be represented by the typical '$\Gamma$'shape.

  • PDF

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fractrue Toughness for very Brittle Materials)

  • 이억섭;한유상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fracture Toughnesses for very Brittle Materials)

  • 이억섭;전현선
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.160-165
    • /
    • 1997
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughnesses for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracturetoughnesses for very brittle materials because of the small crack initiation load which may be engulfed by the inertia load of the instrumented tup. To evaluate the dynamic fracture toughnesses of very brittle materials, such as chalk or plaster,it is thus, necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has very small Young's modulus comparing to one of the conventional steel tup, is used for the instrumented Charpy impact test, and a proper testing method to evaluate the dynamic fracture behavior of very brittle materials is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initiation of the very brittle materials.

  • PDF