• 제목/요약/키워드: Dynamic force

검색결과 3,292건 처리시간 0.031초

채터진동에서의 동적 절삭력의 모델링과 안정성 해석 (A modeling of dynamic cutting force and analysis of stability in chatter vibration)

  • 김정석;강명창
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 1993
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is presented in order to predict the dynamic cutting force from the static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The stability analysis is carried out by a two degree of freedom system. The chatter experiments are conducted by exciting the cutting tool with an impact hammer during an orthogonal cutting. A good agreement is shown between the stability limits predicted by theory and the critical width of cut determined by experiments.

  • PDF

수치해석을 이용한 우물통 기초의 관성력과 동적토압의 위상관계 분석 (Analysis on Phase Relation between Inertia Force and Dynamic Earth Pressure of Caisson by Numerical Analysis)

  • 김성렬;장학성
    • 한국지진공학회논문집
    • /
    • 제12권2호
    • /
    • pp.23-31
    • /
    • 2008
  • 지진시 구조물에 작용하는 동적토압은 구조물 관성력과 동적토압의 위상관계에 따라 구조물의 변위에 대한 하중 또는 저항력으로 발휘될 수 있다. 본 연구에서는 위상관계를 고려한 동적토압 산정 절차를 제안하고, 이 절차에 따라 교량 우물통 기초에 대한 수치해석을 수행하여 구조물 관성력과 동적토압의 위상관계를 분석하였다. 그 결과, 지반강성이 작아서 지반의 변위진폭이 구조물의 변위 진폭보다 큰 경우에는 동적토압이 구조물의 변위를 증가시키는 하중으로 발휘되며, 지반강성이 커서 지반의 변위진폭이 구조물의 변위진폭보다 작은 경우에는 동적토압이 구조물의 변위를 감소시키는 저항력으로 발휘되는 것으로 나타났다.

헬리컬 기어계의 동적 전달오차의 예측 (The Prediction of the Dynamic Transmission Error for the Helical Gear System)

  • 박찬일;조도현
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

질량변화를 갖는 유연한 미사일의 동적 안정성에 관한 연구 (A Study on the Dynamic Stability of a Flexible Missile with Mass Variation)

  • 류봉조
    • 한국정밀공학회지
    • /
    • 제8권4호
    • /
    • pp.107-117
    • /
    • 1991
  • The dynamic stability problem of nonconservative system is one of the important problems. In this study, flexible missile with mass variation is regarded as a free Timoshenko beam subjected to a controlled follower force. The stability was studied numerically through the finite element method. Through the study, the obtained results are as follows: [1] Without force direction control (1) In the case of no mass reduction, the existence of concentrated mass increases critical follower force. (2) Mass reduction rate of the beam slightly effects on the change of critical follower force. [2] With force direction control (1) Shear deformation parameter S contributes insignificantly to the force at instability when $S{\geq}10^4$. (2) With mass variation, increase of concentrated mass increases critical follower force at instbility. (3) The type of promary instability is determined by the sensor location.

  • PDF

서징 효과를 고려한 원통형 코일 스프링의 전달 함수 해석 (Transfer Function Analysis of Cylindrical Coil Springs by Considering Surging Effect)

  • 김대원;신중호
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.145-151
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of cylindrical coil spring subjected to dynamic behavior. Transfer functions are presented for both deflection and transmitted force as the output with force as the input. Steady state sinusoidal magnitude ratio and transmittance are plotted along with experimental data. It is shown that dynamic characteristic of cylindrical coil spring must be used to enhance the reability of vibration system dynamic behavior analysis in actuating over some frequency.

  • PDF

Dynamic analysis of a beam subjected to an eccentric rolling disk

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.455-470
    • /
    • 2013
  • This paper presents a theory concerning the beam element subjected to an eccentric rolling disk (or simply called the eccentric-disk-loaded beam element) such that the dynamic responses of a beam subjected to an eccentric rolling disk with its inertia force, Coriolis force and centrifugal force considered can be easily determined. To this end, the property matrices of an eccentric-disk-loaded beam element are firstly derived by means of the Lagrange's equations. Then, the overall property matrices of the entire vibrating system are determined by directly adding the property matrices of the eccentric-disk-loaded beam element to the overall ones of the entire beam itself. Finally, the Newmark direct integration method is used to solve the equations of motion for the dynamic responses of a beam subjected to an eccentric rolling disk. Some factors relating to the title problem, such as the eccentricity, radius and rotating speed of the rolling disk, and the Coriolis force and centrifugal force induced by the rolling disk are investigated. Numerical results reveal that the influence of last factors on the dynamic responses of the pinned-pinned beam is significant except the centrifugal force.

충격하중을 받는 시스템의 케인 방법을 이용한 다물체 동역학 해석 (Dynamic Analysis of Multibody Systems Undertaking Impulsive Force using Kane's Method)

  • 김상국;박정훈;유홍희
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.169-176
    • /
    • 1998
  • A method for the dynamic analysis of multibody systems undertaking impulsive force is introduced in this paper. A partial velocity matrix based on Kane's method is introduced to reduce the number of equations to be solved. Only minimum number of equations of motion can be obtained by using the partial velocity matrix. This reduces the computational effort significantly to obtain the dynamic response of the system. At the very moment of the impulse, instead of using the numerical integrator to solve the equations of motion, the impulse and momentum principle is used to obtain the dynamic response. The impulse as wall as the reaction force acting on the kinematic joints can easily calculated too.

  • PDF

최소 절삭력형 정면밀링 커터의 동적거동에 관한 연구 (A Study about Dynamic Behavior of the Face Milling Cutter to Minimize Resultant Cutting Force)

  • Kim, J.H.
    • 한국정밀공학회지
    • /
    • 제13권4호
    • /
    • pp.87-96
    • /
    • 1996
  • On face milling operation a newly optimal tool, which can minimize the resultant cutting forces resulted from the cutting force model, was designed and manufactrued. Cutting experiments using the new and conventional tools were carried out and the cutting forces resulted from those tools were analyzed in time and frequency domains. The performance of the optimized cutter was tested through the dynamic cutting forces resulted form the newly designed tool are much reduced in comparision with those from the conventional tool. By reducing the dynamic cutting force fluctuations, machine tool vibrations can be reduced, and stable cutting operation can be carried out.

  • PDF

틸팅차량의 견인 및 제동 상황시의 동적 특성에 관한 연구 (A study on dynamic behavior in tractive and braking states of tilting train)

  • 박지연;정일호;이진형;박태원;김석원;김영국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1107-1111
    • /
    • 2004
  • Tilting train improves a traveling velocity through giving a tilt the car-body without ride comfort deterioration in curve. Dynamic behavior in acceleration or deceleration will show quite another feature in constant velocity. In this study, we see through the dynamic behavior due to a variation of tractive force and braking force in Korean Tilting Train. Hence we compose of 3D dynamic model, as well as we check upon the property in service tractive condition and unique tractive condition with a fault motor. Besides we check upon the property in service braking condition and unique braking condition with a fault system. This study has the meaning with reference data of developing Korean Tilting Train test traveling.

  • PDF

공기저항이 고려된 Dynamic Elastica 이론을 통한 유연매체의 거동해석 (Analysis of Flexible Media by Dynamic Elastica Theory with Aerodynamic Force)

  • 홍성권;지중근;장용훈;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.547-550
    • /
    • 2005
  • In many machines handling lightweight and flexible media, such as automated teller machines and printers, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite difference method. The analysis has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Different results were obtained with and without aerodynamic effect and the resulted show that after contacting circular guide, the directions of flexible media of two cases are different.

  • PDF