• 제목/요약/키워드: Dynamic equilibrium

검색결과 571건 처리시간 0.035초

Numerical simulation of the neutral equilibrium atmospheric boundary layer using the SST k-ω turbulence model

  • Hu, Peng;Li, Yongle;Cai, C.S.;Liao, Haili;Xu, G.J.
    • Wind and Structures
    • /
    • 제17권1호
    • /
    • pp.87-105
    • /
    • 2013
  • Modeling an equilibrium atmospheric boundary layer (ABL) in an empty computational domain has routinely been performed with the k-${\varepsilon}$ turbulence model. However, the research objects of structural wind engineering are bluff bodies, and the SST k-${\omega}$ turbulence model is more widely used in the numerical simulation of flow around bluff bodies than the k-${\varepsilon}$ turbulence model. Therefore, to simulate an equilibrium ABL based on the SST k-${\omega}$ turbulence model, the inlet profiles of the mean wind speed U, turbulence kinetic energy k, and specific dissipation rate ${\omega}$ are proposed, and the source terms for the U, k and ${\omega}$ are derived by satisfying their corresponding transport equations. Based on the proposed inlet profiles, numerical comparative studies with and without considering the source terms are carried out in an empty computational domain, and an actual numerical simulation with a trapezoidal hill is further conducted. It shows that when the source terms are considered, the profiles of U, k and ${\omega}$ are all maintained well along the empty computational domain and the accuracy of the actual numerical simulation is greatly improved. The present study could provide a new methodology for modeling the equilibrium ABL problem and for further CFD simulations with practical value.

Analysis of activated colloidal crud in advanced and modular reactor under pump coastdown with kinetic corrosion

  • Khurram Mehboob;Yahya A. Al-Zahrani
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4571-4584
    • /
    • 2022
  • The analysis of rapid flow transients in Reactor Coolant Pumps (RCP) is essential for a reactor safety study. An accurate and precise analysis of the RCP coastdown is necessary for the reactor design. The coastdown of RCP affects the coolant temperature and the colloidal crud in the primary coolant. A realistic and kinetic model has been used to investigate the behavior of activated colloidal crud in the primary coolant and steam generator that solves the pump speed analytically. The analytic solution of the non-dimensional flow rate has been determined by the energy ratio β. The kinetic energy of the coolant fluid and the kinetic energy stored in the rotating parts of a pump are two essential parameters in the form of β. Under normal operation, the pump's speed and moment of inertia are constant. However, in a coastdown situation, kinetic damping in the interval has been implemented. A dynamic model ACCP-SMART has been developed for System Integrated Modular and Advanced Reactor (SMART) to investigate the corrosion due to activated colloidal crud. The Fickian diffusion model has been implemented as the reference corrosion model for the constituent component of the primary loop of the SMART reactor. The activated colloidal crud activity in the primary coolant and steam generator of the SMART reactor has been studied for different equilibrium corrosion rates, linear increase in corrosion rate, and dynamic RCP coastdown situation energy ratio b. The coolant specific activity of SMART reactor equilibrium corrosion (4.0 mg s-1) has been found 9.63×10-3 µCi cm-3, 3.53×10-3 µC cm-3, 2.39×10-2 µC cm-3, 8.10×10-3 µC cm-3, 6.77× 10-3 µC cm-3, 4.95×10-4 µC cm-3, 1.19×10-3 µC cm-3, and 7.87×10-4 µC cm-3 for 24Na, 54Mn, 56Mn, 59Fe, 58Co, 60Co, 99Mo, and 51Cr which are 14.95%, 5.48%, 37.08%, 12.57%, 10.51%, 0.77%, 18.50%, and 0.12% respectively. For linear and exponential coastdown with a constant corrosion rate, the total coolant and steam generator activity approaches a higher saturation value than the normal values. The coolant and steam generator activity changes considerably with kinetic corrosion rate, equilibrium corrosion, growth of corrosion rate (ΔC/Δt), and RCP coastdown situations. The effect of the RCP coastdown on the specific activity of the steam generators is smeared by linearly rising corrosion rates, equilibrium corrosion, and rapid coasting down of the RCP. However, the time taken to reach the saturation activity is also influenced by the slope of corrosion rate, coastdown situation, equilibrium corrosion rate, and energy ratio β.

글리세롤계 계면활성제 합성 및 계면 특성에 관한 연구 (Synthesis and Characterization of Interfacial Properties of Glycerol Surfactant)

  • 임종주;이슬;김병조;이종기;최규용
    • 공업화학
    • /
    • 제22권4호
    • /
    • pp.376-383
    • /
    • 2011
  • 글리시돌과 라우릴 알코올을 반응시켜 합성한 LA와 LA3 비이온계면활성제의 CMC는 각각 $0.97{\times}10^{-3}mol/L$, $1.02{\times}10^{-3}mol/L$이며, 1 wt% 농도에서의 표면장력은 26.99 mN/m과 27.48 mN/m이었다. 동적 표면장력 측정 결과에 의하면 LA와 LA3 비이온 계면활성제 모두, 공기와 수용액의 계면이 계면활성제 단분자에 의하여 비교적 짧은 시간 내에 포화되었으며, 1 wt% LA와 LA3 계면활성제 시스템들의 접촉각은 각각 27.8, $20.9^{\circ}$를 나타내었다. 비극성 오일 n-decane과 1 wt% 계면활성제 수용액 사이의 시간에 따른 계면장력은 시간에 따라 감소하며, LA와 LA3 시스템 모두 2~3 min 이내의 짧은 시간에 평형에 도달하였고, 평형에서의 계면장력 값은 각각 0.1524, 0.1716 mN/n을 나타내었다. $25^{\circ}C$에서의 계면활성제 수용액은 두 시스템 모두 비교적 안정한 상태를 유지하였고, LA 비이온 계면활성제가 LA3 비이온 계면활성제에 비하여 거품 안정성이 큼을 확인하였으며, 이러한 거품 안정성 측정 결과는 표면장력 측정 결과와도 일치하였다. 계면활성제, 물, 비극성 탄화수소 오일로 이루어진 3성분 시스템에 대하여 $25{\sim}60^{\circ}C$의 온도에서 상평형 실험을 수행한 결과, lower phase 마이크로에멀젼 혹은 oil in water (O/W) 마이크로에멀젼이 excess oil 상과 평형을 이루는 2상 영역만이 관찰되었을 뿐, lamellar liquid crystalline phase 혹은 middle-phase 마이크로에멀젼을 포함한 3상 영역은 나타나지 않았다.

A Raid-Type War-Game Model Based on a Discrete Multi-Weapon Lanchester's Law

  • Baik, Seung-Won
    • Management Science and Financial Engineering
    • /
    • 제19권2호
    • /
    • pp.31-36
    • /
    • 2013
  • We propose a war-game model that is appropriate for a raid-type warfare in which, a priori, the maneuver of the attacker is relatively certain. The model is based on a multi-weapon extention of the Lanchester's law. Instead of a continuous time dynamic game with the differential equations from the Lanchester's law, however, we adopt a multi-period model relying on a time-discretization of the Lanchester's law. Despite the obvious limitation that two players make a move only on the discrete time epochs, the pragmatic model has a manifold justification. The existence of an equilibrium is readily established by its equivalence to a finite zero-sum game, the existence of whose equilibrium is, in turn, well-known to be no other than the LP-duality. It implies then that the war-game model dictates optimal strategies for both players under the assumption that any strategy choice of each player will be responded by a best strategy of her opponent. The model, therefore, provides a sound ground for finding an efficient reinforcement of a defense system that guarantees peaceful equilibria.

CO2냉매용 제어밸브의 응답 특성 (Transient Response Analysis of a Control Valve for CO2 Refrigerant)

  • 김보현;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.

Geometrically non-linear dynamic analysis of plates by an improved finite element-transfer matrix method on a microcomputer

  • Chen, YuHua
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.395-402
    • /
    • 1994
  • An improved finite element-transfer matrix method is applied to the transient analysis of plates with large displacement under various excitations. In the present method, the transfer of state vectors from left to right in a combined finite element-transfer matrix method is changed into the transfer of generally incremental stiffness equations of every section from left to right. Furthermore, in this method, the propagation of round-off errors occurring in recursive multiplications of transfer and point matrices is avoided. The Newmark-${\beta}$ method is employed for time integration and the modified Newton-Raphson method for equilibrium iteration in each time step. An ITNONDL-W program based on this method using the IBM-PC/AT microcomputer is developed. Finally numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for dynamic large deflection analysis of plates with random boundaries under various excitations.

터널 진동해석을 위한 반무한 경계요소법의 적용 (Application of Semi-infinite Boundary Element Method for Tunnel Vibration Analysis)

  • 김문겸;이종우;전제성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.128-136
    • /
    • 1994
  • In this study, dynamic boundary element method using mass matrix is derived, using fundamental solutions for the semi-infinite domain. In constituting boundary integral equations for the dynamic equilibrium condition, inertia term in the form of domain integral is transformed into boundary integral form. Corresponding system equations are derived, and a boundary element program is developed. In addition, equations for free vibration is formulated, and eigenvalue analysis is performed. The results from the dynamic boundary element analysis for a tunnel problem are compared with those from the finite element analysis. According to the comparison, boundary element method using mass matrix is consistent with the results of finite element method. Consequently, in tunnel vibration problems, it results in reasonable solution compared with other methods where relatively higher degree of freedoms are employed.

  • PDF

유한요소법에 의한 펌프축계의 안정성해석 (Stability analysis of pump using finite element method)

  • 양보석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.31-40
    • /
    • 1986
  • With the tendency toward high speed and high pressure in centrifugal pumps, the problem of sub-synchronous vibration has arisen, caused by the hydraulic forces of the working fluid, such as wearring, balance piston, impeller, etc.. These forces can drastically alter the rotor critical speeds and stability characteristics, and can be acted significant destabilizing forces. For preventing such self-excited vibration, the desing of the rotor system needs, which would secure the stability of the machine. In this paper, a procedure is presented for dynamic modeling of rotor-bearing-seal-impeller systems which consist of rigid disks, distributed parameter finite rotor elements and discrete bearings, seals and impellers. A finite element model including the effects of rotatory inertia and gyroscopic moments is developed using the consistent matrix approach. The technique of dynamic matrix reduction is applied to the shaft matrices to reduce them to a set of matrices of dynamic of significantly fewer degrees of freedom. The representation of bearing, seal and impeller elements is in term of linearized stiffness and damping matrices by reasonably small perturbations from equilibrium. The stability behavior of a typical double suction centrifugal pump is presented. Results show the influence of clearance and flow conditions on running speeds and stability characteristics.

  • PDF

SHPB 기법에서 Pusle shpaer 가 내유 고무(NBR)의 동적 변형 거동에 미치는 영향 (Effect of pulse shaper in SHPB technique on dynamic deformation behavior of an NBR rubber)

  • 김성현;이억섭;이종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.634-637
    • /
    • 2004
  • This paper presents a Split Hopkinson Pressure Bar(SHPB) technique to obtain compressive stress-strain data for rubber materials. An experimental technique that modifies the conventional Split Hopkinson Pressure Bar(SHPB) has been developed for measuring the compressive stress-strain responses of materials with low mechanical impedance and low compressive strengths such as rubber. This paper introduces an all-polymeric pressure bar which achieves a closer impedance match between the pressure bar and the specimen materials. In addition, we are a pulse shaper to lengthen the rising time of the incident wave to ensure stress equilibrium and homogeneous deformation of a rubber materials. It is found that the modified technique can be determine the dynamic deformation behavior of an NBR rubber more accurately.

  • PDF

하이브리드 스러스트 마그네틱 베어링의 제어변수 도출 및 동특성 해석 (Dynamic analysis and control parameters deduction of Hybrid thrust magnetic bearing)

  • 장석명;이운호;성소영;최장영;김순용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.724_725
    • /
    • 2009
  • This paper deals with control parameters deduction and dynamic analysis of hybrid thrust magnetic bearing(HTMB). The flux density at air-gap is obtained from system modeling which considers permanent magnet and electro magnet. The vertical force is derived from flux density using maxwell's stress tensor. An accurate linear model is obtained by using linear approximations of the attraction force around the nominal equilibrium point. The dynamic simulation of the HTMB using the PD controller is conducted and control parameters are deducted.

  • PDF