• Title/Summary/Keyword: Dynamic diagnosis

Search Result 366, Processing Time 0.028 seconds

Development of a Diagnosis Algorithm of Influent Loading Levels Using Pattern Matching Method in Sequencing Batch Reactor (SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 유입수 부하수준 진단 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Kim, Hyo-Su;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • DO, ORP and pH values measured during SBR operation can provide information about removal reaction of organic contaminants and nutrient materials in the reactor. It is already generalized control strategy to control reaction phase time using their special patterns indicating the end of the removal reactions. However, those informations are limited to point out the end time of oxidative reaction in the aerobic phase or reductive reaction in the anoxic phase without giving quantitative value of influent loading level. In this research, a diagnosis algorithm which can estimate the loading level of carbon and ammonia as high, medium and low was developed using the basic measurements like DO, ORP, and pH. It will be possible to know the level of influent loading rate from those online measurements without experimental analysis.

Study on Vacuum Pump Monitoring Using Adaptive Parameter Model (적응형 인자 모델을 이용한 개선된 진공펌프 상태진단에 관한 연구)

  • Lee, Kyu-Ho;Lee, Soo-Gab;Lim, Jong-Yeon;Cheung, Wan-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.3
    • /
    • pp.165-175
    • /
    • 2011
  • This paper introduces statistical features observed from measured batch data from the multiple operation state variables of dry vacuum pumps running in the semiconductor processes. The amplitude distribution characteristics of such state variables as inlet pressures, supply currents of the booster and dry pumps, and exhaust pressures are shown to be divided into two or three distinctive regions. This observation gives an idea of using an adaptive parametric model (APM) chosen to describe their statistical features. This modelling, in comparison to the traditional dynamic time wrapping algorithm, is shown to provide superior performance in computation time and memory resources required in the preprocessing stage of sampled batch data for the diagnosis of running dry vacuum pumps. APM model-based batch data are demonstrated to be very appropriate for monitoring and diagnosing the running conditions of dry vacuum pumps.

A Non-Invasive Ultrasonic Urinary Bladder Internal Pressure Monitoring Technique: Its Theoretical Foundation and Feasibility Test (비침습적 초음파 방광 내압 측정 기술: 이론적 기초 및 실현 가능성 평가)

  • Choi, Min Joo;Kang, Gwan Suk;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.526-539
    • /
    • 2012
  • A new approach was proposed in this article, named, a non-invasive ultrasonic method to monitor the urinary bladder internal pressure which can resolve the shortcomings of the existing methods. The proposed method makes use of acoustic cavitation. It is based on a physical phenomenon that an extracorporeal high intensity focused ultrasonic pulse generates bubbles inside the urinary bladder and the dynamic properties of the bubbles are related to the urinary bladder internal pressure. The article presents the theoretical foundation for the proposed technique and verifies its feasibility with preliminary experimental data. The suggested ultrasonic urinary bladder internal pressure monitoring method is non-invasive and can be used any time regardless of sex and age, so that it will be of a great benefit to the diagnosis and therapy of urination related diseases.

Avulsion injuries: an update on radiologic findings

  • Choi, Changwon;Lee, Sun Joo;Choo, Hye Jung;Lee, In Sook;Kim, Sung Kwan
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.289-307
    • /
    • 2021
  • Avulsion injuries result from the application of a tensile force to a musculoskeletal unit or ligament. Although injuries tend to occur more commonly in skeletally immature populations due to the weakness of their apophysis, adults may also be subject to avulsion fractures, particularly those with osteoporotic bones. The most common sites of avulsion injuries in adolescents and children are apophyses of the pelvis and knee. In adults, avulsion injuries commonly occur within the tendon due to underlying degeneration or tendinosis. However, any location can be involved in avulsion injuries. Radiography is the first imaging modality to diagnose avulsion injury, although advanced imaging modalities are occasionally required to identify subtle lesions or to fully delineate the extent of the injury. Ultrasonography has a high spatial resolution with a dynamic assessment potential and allows the comparison of a bone avulsion with the opposite side. Computed tomography is more sensitive for depicting a tiny osseous fragment located adjacent to the expected attachment site of a ligament, tendon, or capsule. Moreover, magnetic resonance imaging is the best imaging modality for the evaluation of soft tissue abnormalities, especially the affected muscles, tendons, and ligaments. Acute avulsion injuries usually manifest as avulsed bone fragments. In contrast, chronic injuries can easily mimic other disease processes, such as infections or neoplasms. Therefore, recognizing the vulnerable sites and characteristic imaging features of avulsion fractures would be helpful in ensuring accurate diagnosis and appropriate patient management. To this end, familiarity with musculoskeletal anatomy and mechanism of injury is necessary.

A Study on the Quantitative Evaluation Method of Quality Control using Ultrasound Phantom in Ultrasound Imaging System based on Artificial Intelligence (인공지능을 활용한 초음파영상진단장치에서 초음파 팬텀 영상을 이용한 정도관리의 정량적 평가방법 연구)

  • Yeon Jin, Im;Ho Seong, Hwang;Dong Hyun, Kim;Ho Chul, Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.390-398
    • /
    • 2022
  • Ultrasound examination using ultrasound equipment is an ultrasound device that images human organs using sound waves and is used in various areas such as diagnosis, follow-up, and treatment of diseases. However, if the quality of ultrasound equipment is not guaranteed, the possibility of misdiagnosis increases, and the diagnosis rate decreases. Accordingly, The Korean Society of Radiology and Korea society of Ultrasound in Medicine presented guidelines for quality management of ultrasound equipment using ATS-539 phantom. The DenseNet201 classification algorithm shows 99.25% accuracy and 5.17% loss in the Dead Zone, 97.52% loss in Axial/Lateral Resolution, 96.98% accuracy and 20.64% loss in Sensitivity, 93.44% accuracy and 22.07% loss in the Gray scale and Dynamic Range. As a result, it is the best and is judged to be an algorithm that can be used for quantitative evaluation. Through this study, it can be seen that if quantitative evaluation using artificial intelligence is conducted in the qualitative evaluation item of ultrasonic equipment, the reliability of ultrasonic equipment can be increased with high accuracy.

Early Identification of Gifted Young Children and Dynamic assessment (유아 영재의 판별과 역동적 평가)

  • 장영숙
    • Journal of Gifted/Talented Education
    • /
    • v.11 no.3
    • /
    • pp.131-153
    • /
    • 2001
  • The importance of identifying gifted children during early childhood is becoming recognized. Nonetheless, most researchers preferred to study the primary and secondary levels where children are already and more clearly demonstrating what talents they have, and where more reliable predictions of gifted may be made. Comparatively lisle work has been done in this area. When we identify giftedness during early childhood, we have to consider the potential of the young children rather than on actual achievement. Giftedness during early childhood is still developing and less stable than that of older children and this prevents us from making firm and accurate predictions based on children's actual achievement. Dynamic assessment, based on Vygotsky's concept of the zone of proximal development(ZPD), suggests a new idea in the way the gifted young children are identified. In light of dynamic assessment, for identifying the potential giftedness of young children. we need to involve measuring both unassisted and assisted performance. Dynamic assessment usually consists of a test-intervene-retest format that focuses attention on the improvement in child performance when an adult provides mediated assistance on how to master the testing task. The advantages of the dynamic assessment are as follows: First, the dynamic assessment approach can provide a useful means for assessing young gifted child who have not demonstrated high ability on traditional identification method. Second, the dynamic assessment approach can assess the learning process of young children. Third, the dynamic assessment can lead an individualized education by the early identification of young gifted children. Fourth, the dynamic assessment can be a more accurate predictor of potential by linking diagnosis and instruction. Thus, it can make us provide an educational treatment effectively for young gifted children.

  • PDF

The Evaluation of Dynamic Continuous Mode in Brain SPECT (Brain SPECT 검사 시 Dynamic Continuous Mode의 유용성 평가)

  • Park, Sun Myung;Kim, Soo Yung;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Purpose During Brain SPECT study, critical factor for proper study with $^{99m}Tc-ECD$ or $^{99m}Tc-HMPAO$ is one of the important causes to patent's movement. It causes both improper diagnosis and examination failure. In this study, we evaluated the effect of Dynamic Continuous Mode Acquisition compared to Step and Shoot Mode to raise efficacy and reject the data set with movement, as well as, be reconstructed in certain criteria. Materials and Methods Deluxe Jaszczak phantom and Hoffman 3D Brain phantom were used to find proper standard data set and exact time. Step and Shoot Mode and Dynamic Continuous Mode Acquisition were performed with SymbiaT16. Firstly, Deluxe Jaszczak phantom was filled with $Na^{99m}TcO_4$ 370 MBq and obtained in 60 minutes to check spatial resolution compared with Step and Shoot Mode and Dynamic Continuous Mode. The second, the Hoffman 3D Phantom filled with $Na^{99m}TcO_4$ 74 MBq was acquired for 15 Frame/minutes to evaluate visual assessment and quantification. Finally, in the Deluxe Jaszczak phantom, Spheres and Rods were measured by MI Apps program as well as, checking counts with the frontal lobe, temporal lobe, occipital lobe, cerebellum and hypothalamus parts was performed in the Hoffman 3D Brain Phantom. Results In Brain SPECT Study, using Dynamic Continuous Mode rather than current Step and Shoot Mode, we can do the reading using the 20 to 50 % of the acquired image, and during the test if the patient moves, we can remove unneeded image to reduce the rate of restudy and reinjection. Conclusion Dynamic Continuous Mode in Brain study condition enhances effects compared to Step and Shoot Mode. And also is powerful method to reduce reacquisition rate caused by patient movement. The findings further indicate that it suggest rejection limit to maintain clinical value with certain reconstruction factors compared with Tomo data set. Further examination to improve spatial resolution, SPECT/CT should be the answer for that.

  • PDF

An Optimization Method of Measuring Heart Position in Dynamic Myocardial Perfusion SPECT with a CZT-based camera (동적 심근관류 SPECT에서 심장의 위치 측정방법에 대한 고찰)

  • Seong, Ji Hye;Lee, Dong Hun;Kim, Eun Hye;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.75-79
    • /
    • 2019
  • Purpose Cadmium-zinc-telluride (CZT) camera with semiconductor detector is capable of dynamic myocardial perfusion SPECT for coronary flow reserve (CFR). Image acquisition with the heart positioned within 2 cm in the center of the quality field of view (QFOV) is recommended because the CZT detector based on focused multi-pinhole collimators and is stationary gantry without rotation. The aim of this study was to investigate the optimal method for measuring position of the heart within the center of the QFOV when performing dynamic myocardial perfusion SPECT with the Discovery NM 530c camera. Materials and Methods From June to September 2018, 45 patients were subject to dynamic myocardial perfusion SPECT with D530c. For accurate heart positioning, the patient's heart was scanned with a mobile ultrasound and marked at the top of the probe where the mitral valve (MV) was visible in the parasternal long-axis view (PLAX). And, the marked point on the patient's body matched with the reference point indicated CZT detector in dynamic stress. The heart was positioned to be in the center of the QFOV in rest. The coordinates of dynamic stress and rest were compared statistically. Results The coordinates of the dynamic stress using mobile ultrasound and those taken of the rest were recorded for comparative analysis with regard to the position of the couch and analyzed. There were no statistically significant differences in the coordinates of Table in & out, Table up & down, and Detector in & out (P > 0.05). The difference in distance between the 2 groups was measured at $0.25{\pm}1.00$, $0.24{\pm}0.96$ and $0.25{\pm}0.82cm$ respectively, with no difference greater than 2 cm in all categories. Conclusion The position of the heart taken using mobile ultrasound did not differ significantly from that of the center of the QFOV. Therefore, The use of mobile ultrasound in dynamic stress will help to select the correct position of the heart, which will be effective in clinical diagnosis by minimizing the image quality improvement and the patient's exposure to radiation.

Effects of Settings in Dynamic Ranges and Frequency Modes on Ultrasonic Images (초음파 영상에서 동적영역과 주파수 방식의 설정에 따른 효과)

  • Yang, Jeong-Hwa;Kang, Gwan-Suk;Lee, Kyung-Sung;Paeng, Dong-Guk;Choi, Min-Joo
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.277-283
    • /
    • 2009
  • It is important to get clinical ultrasonic images of good quality for accurate diagnosis. In this study, it observed the change of ultrasonic images against setting frequency, dynamic range(DR) and type of probes on ultrasonic scanner. In the experiment it evaluated image of LCS (Low Contrast Sensitivity) targets(-15, -6, -3, +3, +6, +15 dB) of a standard ultrasonic test phantoms(539,551, ATS, USA) similar to solid and cystic lesions. Its imaged from convex (C3-7IM) and linear probe (L5-12IM) on SA-9900 (Medison Ltd, Korea) scanner. The images obtained altering the setting parameters which are frequency(gen, pen, res, harmonic) mode and DR($40{\sim}100\;dB$). The quality of images evaluated compare with the nominal LCS value of target and measured LCS value. The results show that there was no significant changing of quality images altering DR 40, 60, 80, 100 dB against frequency in Convex probe but the image being the highest in LCS target at DR 60 dB, harmonic of frequency mode in the -15 dB target close to cystic lesion. In Linear probe, DR 40 dB, harmonic mode at -15 dB LCS target close to nominal value. It discussed necessity of evaluation about ROC(Receiver Operating Characteristic) from the psychological viewpoint and limit of evaluation from quantified images.

  • PDF

CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard

  • Yarong Yu;Lihua Yu;Xu Dai;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1964-1973
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods: Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results: ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08-0.17] vs. 0.04 [0.01-0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81-0.89] vs. 0.91 [0.88-0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717-0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion: ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.