• Title/Summary/Keyword: Dynamic diagnosis

Search Result 355, Processing Time 0.042 seconds

The Role of Dynamic CT for the Differential Diagnosis of Solitary Pulmonary Nodule (고립성 폐결절의 감별진단에서 Dynamic CT의 역할)

  • Chung, Jin-Hong;Park, Won-Jong;Cho, Ihn-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.102-107
    • /
    • 2008
  • Background : Malignant pulmonary nodules account for 30 to 40 percent of all solitary pulmonary nodules (SPNs). Therefore, characterization of SPNs is very important for treatment. Recently, dynamic CT has been widely used for tissue characterization and formation of differential diagnoses. The purpose of this study was to evaluate the ability of dynamic CT to formulate the differential diagnosis of SPNs. Materials and Methods : Nineteen patients with SPNs underwent dynamic CT (unenhanced scans, followed by a series of images at 20, 40, 60, 80, 100, 120, 140, 160, and 180 sec after intravenous injection of contrast medium). Diagnosis of SPN was performed based on pathologic findings in needle biopsy samples. Peak enhancement, net enhancement, slope of enhancement, and maximum relative enhancement ratio of the SPN were measured on dynamic CT, and Levene's test was performed to assess benignancy and malignancy. Results : Twelve SPNs were confirmed to have malignant pathology. There were no significant differences between benign and malignant nodules with respect to peak enhancement (p=0.787), net enhancement (p=0.135), or slope of enhancement (p=0.698). The maximal enhancement ratio was increased in malignancy compared to benignancy, but the difference was not statistically significant (p=0.094). Conclusion : In our study, the hemodynamic characteristics of dynamic CT were not significantly different between benign and malignant nodules. Therefore, long-term studies of larger patient samples are required to confirm our findings.

  • PDF

Operation Modes Classification of Chemical Processes for History Data-Based Fault Diagnosis Methods (데이터 기반 이상진단법을 위한 화학공정의 조업모드 판별)

  • Lee, Chang Jun;Ko, Jae Wook;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.383-388
    • /
    • 2008
  • The safe and efficient operation of the chemical processes has become one of the primary concerns of chemical companies, and a variety of fault diagnosis methods have been developed to diagnose faults when abnormal situations arise. Recently, many research efforts have focused on fault diagnosis methods based on quantitative history data-based methods such as statistical models. However, when the history data-based models trained with the data obtained on an operation mode are applied to another operating condition, the models can make continuous wrong diagnosis, and have limits to be applied to real chemical processes with various operation modes. In order to classify operation modes of chemical processes, this study considers three multivariate models of Euclidean distance, FDA (Fisher's Discriminant Analysis), and PCA (principal component analysis), and integrates them with process dynamics to lead dynamic Euclidean distance, dynamic FDA, and dynamic PCA. A case study of the TE (Tennessee Eastman) process having six operation modes illustrates the conclusion that dynamic PCA model shows the best classification performance.

DIAGNOSTIC RELIABILITY OF THE DYNAMIC MRI FOR THE INTERNAL DERANGEMENT OF TEMPORO-MANDIBULAR JOINTS (악관절내장증의 진단에 있어 Dynamic MRI의 효용)

  • Park, Chang-Hwan;Kim, Myung-Rae;Kim, Sun-Jong;Cheong, Eun-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.3
    • /
    • pp.273-280
    • /
    • 1994
  • The Magnetic Resonance Imaging has been used widely to evaluate the disk position without any interruption of the TMJ structures, and the Dynamic MRI presenting computed serial imaging or the video-recorded simulation images is thought to be very effective to evaluate the disk position under function. This is to study the correlation between the clinical diagnosis and the findings of Dynamic MRI for the diagnosis of internal derangement of the temporomandibular joints. 30 joints(15 patients) were examined clinically, and the movement of TMJ meniscus was reviewed in the dynamic MRI. The comparative results are as follows : 1. All internal derangements of TMJ disk displacement without reduction were consistent with MRI findings. 2. 5 joints (50%) of disk displacements with reduction could not be confirmed by MRI findings. 3. The disk displacements in MRI were found in 55% of painful joints, 50% of clicking joints, and 70% of the joints with restricted movement. 4. The reliability of MRI for the diagnosis of TMD was evaluated as 77% ; 24 of 30 joints who presented with clinical diagnosis of TMD. 5. MRI is very reliable to diagnose the disk displacement without reduction, but it is rather not so effective to diagnose the early derangement or muscle disorders.

  • PDF

A Feasibility Study of Constitution Discrimination Using a Measurement Device for Dynamic Friction Coefficients of the Back of a Hand (손등피부 운동 마찰계수 측정기를 이용한 체질 판별 가능성 연구)

  • Kim, Keun-Ho;Woo, Yung-Jae;Lee, Hae-Jung;Lee, Yu-Jung;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.4
    • /
    • pp.20-29
    • /
    • 2010
  • 1. Objectives Our goal is to observe the feasibility of constitution discrimination from computing quantitative roughness index from dynamic friction coefficients and their gradients with the measurement device of skin friction with 3-Axis load cell sensor. 2. Methods In the traditional Korean medicine, skin diagnosis is one of the examination methods to discriminate Sasang constitution since it was known that Tae-eumin has rough skin, and Soyangin has smooth one. It is based on the skin roughness on the back of one's hand for the discrimination. The measurement device of skin friction with 3-axis load cell sensor has been developed in order to provide quantitative skin roughness through dynamic friction coefficients. The effective interval of the coefficients is obtained from the automatic sampling algorithm to use their curvature and slope. Then, Fisher's discriminant function of them makes the discrimination. 3. Results The success rate of extracting the effective interval was about 90% and the discriminant accuracy between Tae-eumin and Soyangin was 70% and 68% for men and women, respectively. The entire methods showed the possibility to distinguish between Tae-eumin and Soyangin by using stochastic properties of roughness index, which can make the entire system to include the measurement, the computation of the roughness index and the discrimination of constitution automatical. 4. Conclusions The measurement device, the automatic sampling algorithm of dynamic friction coefficients and the constitution discrimination algorithm were developed, respectively, and their combination can become the serial and automatic procedure for quantitative and objective skin diagnosis, which mimics the movement of the Oriental medical doctors' skin diagnosis. It can be applied to healthcare as well as the diagnosis of constitution in a u-Health system soon.

Fault tolerant supervisory control system and automated failure diagnosis

  • Cho, K.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.35-38
    • /
    • 1995
  • We proposed in this paper a systematic way for analyzing discrete event dynamic systems to classify faults and failures quantitatively and to find tolerable fault event sequences embedded in the system. An automated failure diagnosis scheme with respect to the nominal normal operating event sequences and the supervisory control problem for tolerable fault event sequences is presented. Moreover the supervisor failure diagnosis problem with respect to the tolerable fault event sequences is considered. Finally, a plasma etching system example is presented.

  • PDF

Fault Diagnosis of Nonlinear Systems Based on Dynamic Threshold Using Neural Network (신경회로망을 이용한 동적 문턱값에 의한 비선형 시스템의 고장진단)

  • Soh, Byung-Seok;Lee, In-Soo;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.968-973
    • /
    • 2000
  • Fault diagnosis plays an important role in the performance and safe operation of many modern engineering plants. This paper investigates the problem of fault detection using neural networks in dynamic systems. A general framework for constructing a nonlinear fault detection scheme for nonlinear dynamic systems containing modeling uncertaintly is proposed. The main idea behind the proposed approach is to monitor the physical system with an off -line learning neural network and then to approximate the upper and lower thresholds of acceleration of the nominal system with the model-based threshold(ThMB) method, The performance of the proposed fault detection scheme is investigated through simulations of a pendulum with uncertainty.

  • PDF

Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions (동적 하중조건에서 볼 베어링의 고장 탐지에 대한 적외선 열화상 진단메커니즘 고찰)

  • Seo, Jin-Ju;Yoon, Han-Vit;Kim, Dong-Yeon;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.134-138
    • /
    • 2011
  • Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly.

Fault diagnosis for chemical processes using weighted symptom model and pattern matching (가중증상모델과 패턴매칭을 이용한 화학공정의 이상진단)

  • Oh, Young-Seok;Mo, Kyung-Ju;Yoon, Jong-Han;Yoon, En-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.520-525
    • /
    • 1997
  • This paper presents a fault detection and diagnosis methodology based on weighted symptom model and pattern matching between the coming fault propagation trend and the simulated one. In the first step, backward chaining is used to find the possible cause candidates for the faults. The weighted symptom model is used to generate those candidates. The weight is determined from dynamic simulation. Using WSM, the methodology can generate the cause candidates and rank them according to the probability. Second, the fault propagation trends identified from the partial or complete sequence of measurements are compared with the standard fault propagation trends stored a priori. A pattern matching algorithm based on a number of triangular episodes is used to effectively match those trends. The standard trends have been generated using dynamic simulation and stored a priori. The proposed methodology has been illustrated using two case studies, and the results showed satisfactory diagnostic resolution.

  • PDF

Cloud monitoring system for assembled beam bridge based on index of dynamic strain correlation coefficient

  • Zhao, Yiming;Dan, Danhui;Yan, Xingfei;Zhang, Kailong
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • The hinge joint is the key to the overall cooperative working performance of the assembled beam bridge, and it is also the weakest part during the service period. This paper proposes a method for monitoring and evaluating the lateral cooperative working performance of fabricated beam bridges based on dynamic strain correlation coefficient indicator. This method is suitable for monitoring and evaluation of hinge joints status between prefabricated girders and overall cooperative working performance of bridge, without interruption of traffic and easy implementation. The remote cloud monitoring and diagnosis system was designed and implemented on a real assembled beam bridge. The algorithms of data preprocessing, online indicator extraction and status diagnosis were given, and the corresponding software platform and scientific computing environment for cloud operation were developed. Through the analysis of real bridge monitoring data, the effectiveness and accuracy of the method are proved and it can be used in the health monitoring system of such bridges.

Diagnostic Reliability & Case Reports Of The Dynamic MRI For Temporomandibular Joint Disease (악관절증의 진단을 위한 역동적 자기공명 영상의 이용 및 증례)

  • Park, Jin-Ho;Chin, Byung-Rho;Byun, Woo-Mok
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.1
    • /
    • pp.141-148
    • /
    • 1995
  • The Magnetic resonance imaging has been used widely to evaluate the disk position without any interruption of the TMJ structures, and the dynamic MRI presenting computed serial imaging or the video-recorded simulation images is thought to be very effective to evaluate the disk position under function. This is to study the correlation between the clinical diagnosis and the findings of dynamic MRI for diagnosis of internal derangement of the 7 patients were examined clinically, and the movement of TMJ meniscus was reviewed in the dynamic MRI. MRI was very reliable to diagnose the amount of anterior displacement of articular disc, the structural abnormality of temporomandibular joint, the cause of functional limitation, and to differentiate the muscle related pain & dysfunction.

  • PDF