• Title/Summary/Keyword: Dynamic critical load

Search Result 230, Processing Time 0.03 seconds

A Study on the improvement of damping and optimal design of beam flexure for the passive vibration isolator (수동형 음강성 저주파 제진기의 감쇠 성능 향상과 빔 유연체의 최적 설계에 관한 연구)

  • Lee, Gil-Yong;Chang, Hee-Doh;Park, Young-Ho;Park, In-Hwang;Han, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.189-195
    • /
    • 2008
  • The vibration isolator system(VIS) which has very low natural frequency could be designed by applying an axial compressive force to the beam-column flexure(BCF). In this paper a new shape of the BCF is suggested. It has stepwise axially varying properties by viscoelastic damping layer. So it has internal structural damping by damping layer during deformation. First the analytic solution is obtained for the BCF. And its critical load, buckling mode, stiffness and stress distributions are investigated. Also the dynamic properties of the VIS consist of the damping layered BCF are studied. Finally the optimal design procedure of damping layered BCF for the VIS is suggested. The improved performance of suggested VIS is verified by some experiments.

  • PDF

Seismic Ductility Assessment of RC Bridge Piers With Minor Earthquake Damage By the Quasi Static Test (유사정적실험에 의한 지진이력 철근콘크리트 교각의 내진 연성도 평가)

  • 이은희;정영수;박창규;김영섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.505-511
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2,5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes of which magnitude could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P=$0.1f_{ck}A_g. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility, and strain energy ductility.

  • PDF

Stability Analysis of Cracked Cantilever Beam With Tip Mass and Follower Force (끝단질량과 종동력을 가진 크랙 외팔 보의 안정성 해석)

  • Yoon, Han-Ik;Son, In-Soo;Ahn, Tae-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.99-104
    • /
    • 2007
  • In this paper a dynamic behavior(natural frequency) of a cracked cantilever beam with tip mass and follower force is presented. In addition. an analysis of the flutter and buckling instability of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter ins stability based on the variation of the first two resonant frequencies of the beam. Besides. the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Experimental Study on the Stability of the Cantilever Beam with Tip Mass Subjected to a Follower Force (종동력을 받는 첨단질량을 갖는 외말보의 안전성에 관한 실험적 연구)

  • 노광춘;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.183-187
    • /
    • 1986
  • An experimental method to give a tangential follower force to a cantilever beam having a concentrated tip mass by the magnetic force of the electromagnet has been described. The dynamic behaviour of the beam under this nonconservative load has been analysed by experimentally as well as by theoretically. The theoretical and experimental results on the natural frequencies and the critical force of the systems are in good agreement with each other.

Modeling nonlinear behavior of gusset plates in the truss based steel bridges

  • Deliktas, Babur;Mizamkhan, Akhaan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.809-821
    • /
    • 2014
  • The truss based steel bridge structures usually consists of gusset plates which lose their load carrying capacity and rigidity under the effect of repeated and dynamics loads. This paper is focused on modeling the nonlinear material behavior of the gusset plates of the Truss Based Bridges subjected to dynamics loads. The nonlinear behavior of material is characterized by a damage coupled elsto-plastic material models. A truss bridge finite element model is established in Abaqus with the details of the gusset plates and their connections. The nonlinear finite element analyses are performed to calculate stress and strain states in the gusset plates under different loading conditions. The study indicates that damage initiation occurred in the plastic deformation localized region of the gusset plates where all, diagonal, horizontal and vertical, truss member met and are critical for shear type of failure due tension and compression interaction. These findings are agreed with the analytical and experimental results obtained for the stress distribution of this kind gusset plate.

An Experimental Evaluation of Seismic Performancef for Damaged Reinforced Concrete Bridge Piers. (손상된 철근콘크리트 교각의 내진성능평가를 위한 실험연구)

  • 박창규;이은희;이대형;정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.385-392
    • /
    • 2003
  • Experimental investigation was conducted into the flexure/shear-critical behavior of earthquake-damaged reinforced concrete columns with lap splicing of longitudinal reinforcement in the plastic hinge region. Six test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading simultaneously under a constant axial load, P = 0.1 $f_{ck}$ $A_{g}$. Residual seismic performance of damaged columns was evaluated and compared to that of the corresponding original columns. Test results show that RC bridge piers with lap-spliced longitudinal steels in the plastic hinge region appeared to fail at low ductility. This was due to the debonding of the lap splice, which resulted from insufficient development of the longitudinal steels. The specimens externally wrapped with composite FRP straps in the potential plastic hinge region indicated significant improvement both in flexural strength and displacement ductility.y.

  • PDF

Effects of Combustor Stages on M501J Gas Turbine Combustion (M501J 가스터빈 연소기 단별 연료비율이 연소상태에 미치는 영향 고찰)

  • Yu, Won-Ju;Chung, Jin-Do
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2019
  • Most of gas turbine combined cycle power plants are located in urban areas to provide peak load and district heating. However, NOx(nitrogen oxides) of exhaust gas emission from the power plants cause additional fine dust and thus it has negative impact on the urban environment. Although DLN(dry low NOx) and multi-stage combustors have been widely applied to solve this problem, they have another critical problem of damages to combustors and turbine components due to combustion dynamic pressure. In this study, the effect of different fuel ratio on NOx emission and pressure fluctuation was investigated regarding two variable conditions; combustor stages and power output on M501J gas turbine.

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

The structural and non-linear dynamic analysis for radioactive waste container

  • Yu-Yu Shen;Kuei-Jen Cheng;Hsoung-Wei Chou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3010-3016
    • /
    • 2023
  • In recent years, the development of radioactive waste containers for nuclear facility decommissioning and dismantling is a critical issue because the Taiwan domestic boiling water reactor nuclear power plant is going to be decommissioned. The main purpose of this research is to design a metal container that meets the structural requirements of related regulations. At first, the shielding analysis was performed by varying dimensions of radioactive waste to determine the storage efficiency of the container. Then, a series of structural analyses for operational and accidental conditions of the container with full load were conducted, such as lifting, stacking, and drop impact conditions. On the other hand, the field drop impact tests were carried out to ensure structural integrity. The present research demonstrates the structural safety of the developed container for decommissioned nuclear facilities in Taiwan.

Sensor Route Management Scheme for Wireless Sensor Network

  • Rahman, Md. Obaidur;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.1283-1285
    • /
    • 2007
  • A wireless sensor network is the combination of a large number of deployed sensors over an area. Communication between the sensors is the most important factor for a successful sensor network. It is mandatory that long distance and multi-hop communication will occur between sensors. Generally sensors relay the sensed data of a particular territory to the command center via a base station. For the non uniformed deployment of sensors many sensors may deploy in hostile areas surrounded by full of obstacles or in other condition it may be out of the direct communication range of the base station. It seems a critical problem for routing data to and from those sensors to the base station. This paper proposes a route management scheme using a dynamic load balancing approach based on residual energy of each agent sensors.