• Title/Summary/Keyword: Dynamic coupling

Search Result 675, Processing Time 0.026 seconds

Dynamic Characteristics and Adaptation of Elastic Coupling with Rubber Type Circular Segments (원형 고무 세그먼트를 갖는 탄성커플링의 동특성과 적응성)

  • Lee, D.C.;Barro, Ronald D;Kim, J.K.;Nam, T.K.;Yu, J.D.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.346-351
    • /
    • 2011
  • Medium and high speed marine diesel engines with reduction gear have been widely used as prime mover in small car ferries and fishing vessels. The elastic coupling should be installed and complemented the propulsion shafting system to isolate the vibratory torque between engine and reduction gear. In this paper, the dynamic characteristics of elastic coupling with rubber type circular segments is confirmed by theoretical analysis using the FEM and the hydraulic excitation test at shop. Further adaptation was investigated with the torsional vibration test at diesel engine factory shop.

Sliding Mode Analysis Using Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 해석)

  • Kim, Dae-Kwan;Lee, Min-Su;Han, Jae-Hung;Ko, Tae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

Modeling of Belt-Pulley and Flexible Coupling Effects on Submarine Driven System Electrical Motors

  • Jafarboland, Mehrdad;Zadehbagheri, Mahmoud
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.319-326
    • /
    • 2011
  • Nowadays numerous research projects are being conducted in the field of electric motors. Non-modeling of flexible connections such as couplings and the belt-pulley do not show some real behaviors. With an increase in the number of connections and drive factors, these Non-modeled modes become more important. The coupling of two electric motors, instead of one motor, in submarine propeller force is an obvious example which shows that Non-modeled vibration modes caused by flexible connections can disturb controller operation and make undesirable vibrations in the submarine body. In this paper a dynamic model of flexible connections and a completed dynamic model of two different coupled electric models is presented. A robust controller for the completed model is also amended so that the two controlling targets of a desired speed adjustment and an appropriate load division between the two motors with sufficient accuracy are achieved.

Dynamic Model Establishment of a Nonlinear Structure with Sliding Mode Condition Using the Substructure Synthesis Method (부구조물 합성법을 이용한 슬라이딩 모드 조건을 갖는 비선형 구조의 동적 모델 수립)

  • Kim, Dae-Kwan;Lee, Min-Su;Ko, Tae-Hwan;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.814-821
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. The component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its modal parameters are compare with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

The Sensitivity of the Extratropical Jet to the Stratospheric Mean State in a Dynamic-core General Circulation Model (성층권 평균장이 중위도 제트에 미치는 영향: 역학코어 모형 실험)

  • Lee, Jae-Won;Son, Seok-Woo;Kim, Seo-Yeon;Song, Kanghyun
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.171-183
    • /
    • 2021
  • The sensitivity of the extratropical jet to the stratospheric mean state is investigated by conducting a series of idealized numerical experiments using a dynamic-core general circulation model. When the polar stratosphere is forced to be cold, the extratropical jet, defined by the 850-hPa zonal wind, tends to shift poleward without much change in its intensity. The opposite is also true when the polar stratosphere becomes warm. This jet response, however, is not exactly linear. A poleward jet shift under a cold vortex is much weaker than an equatorward jet shift under a warm vortex. The jet intensity change is also larger under a warm vortex. This result indicates that the stratosphere-troposphere downward coupling is more efficient for the warm and weak polar vortex. This finding is consistent with a stronger downward coupling during stratospheric sudden warming than vortex intensification events in the Northern Hemisphere winter, possibly providing a clue to better understand the observed stratosphere-troposphere downward coupling.

Dynamic Characteristics and Stability of an Infrared Search and Track (적외선 탐색 및 추적장비의 동적 특성 및 안정화)

  • Choi, Jong-Ho;Park, Yong-Chan;Lee, Joo-Hyoung;Choi, Young-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

A Time Integration Method for Analysis of Dynamic Systems Using Domain Decomposition Technique

  • Fujikawa Takeshi;Imanishi Etsujiro
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.429-436
    • /
    • 2005
  • This paper presents a precise and stable time integration method for dynamic analysis of vibration or multibody systems. A total system is divided into several subsystems and their responses are calculated separately, while the coupling effect is treated equivalently as constant force during time steps. By using iterative procedure to improve equivalent coupling forces, a precise and stable solution is obtained. Some examples such as a seismic response and multibody analyses were carried out to demonstrate its usefulness.

A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System (유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구)

  • Lee, Sun-Sook;Oh, Byung-Young;Yoon, Hyung-Won;Cha, Seog-Ju;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF