DOI QR코드

DOI QR Code

The Sensitivity of the Extratropical Jet to the Stratospheric Mean State in a Dynamic-core General Circulation Model

성층권 평균장이 중위도 제트에 미치는 영향: 역학코어 모형 실험

  • Lee, Jae-Won (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Seo-Yeon (School of Earth and Environmental Sciences, Seoul National University) ;
  • Song, Kanghyun (School of Earth and Environmental Sciences, Seoul National University)
  • 이재원 (서울대학교 지구환경과학부) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 김서연 (서울대학교 지구환경과학부) ;
  • 송강현 (서울대학교 지구환경과학부)
  • Received : 2021.01.24
  • Accepted : 2021.04.05
  • Published : 2021.06.30

Abstract

The sensitivity of the extratropical jet to the stratospheric mean state is investigated by conducting a series of idealized numerical experiments using a dynamic-core general circulation model. When the polar stratosphere is forced to be cold, the extratropical jet, defined by the 850-hPa zonal wind, tends to shift poleward without much change in its intensity. The opposite is also true when the polar stratosphere becomes warm. This jet response, however, is not exactly linear. A poleward jet shift under a cold vortex is much weaker than an equatorward jet shift under a warm vortex. The jet intensity change is also larger under a warm vortex. This result indicates that the stratosphere-troposphere downward coupling is more efficient for the warm and weak polar vortex. This finding is consistent with a stronger downward coupling during stratospheric sudden warming than vortex intensification events in the Northern Hemisphere winter, possibly providing a clue to better understand the observed stratosphere-troposphere downward coupling.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1C1C2006868).

References

  1. Adam, O., K. M. Grise, P. Staten, I. R. Simpson, S. M. Davis, N. A. Davis, D. W. Waugh, T. Birner, and A. Ming, 2018: The TropD software package (v1): standardized methods for calculating tropical-width diagnostics. Geosci. Model Dev., 11, 4339-4357, doi: 10.5194/gmd-11-4339-2018.
  2. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584. https://doi.org/10.1126/science.1063315
  3. Becker, E., G. Schmitz, and R. Geprags, 1997: The feedback of midlatitude waves onto the Hadley cell in a simple general circulation model. Tellus A, 49, 182-199. https://doi.org/10.3402/tellusa.v49i2.14464
  4. Butler, A. H., D. W. J. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. J. Climate, 23, 3474-3496, doi:10.1175/2010JCLI3228.1.
  5. Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83-109. https://doi.org/10.1029/JZ066i001p00083
  6. Chen, G., and P. Zurita-Gotor, 2008: The tropospheric jet response to prescribed zonal forcing in an idealized atmospheric model. J. Atmos. Sci., 65, 2254-2271. https://doi.org/10.1175/2007JAS2589.1
  7. Davini, P., C. Cagnazzo, and J. A. Anstey, 2014: A blocking view of the stratosphere-troposphere coupling. J. Geophys. Res. Atmos., 119, 11100-11115, doi:10.1002/2014JD021703.
  8. Dunn-Sigouin, E., and T. A. Shaw, 2015: Comparing and contrasting extreme stratospheric events, including their coupling to the tropospheric circulation. J. Geophys. Res. Atmos., 120, 1374-1390, doi:10.1002/2014JD022116.
  9. Gerber, E. P., and L. M. Polvani, 2009: Stratosphere-troposphere coupling in a relatively simple AGCM: The importance of stratospheric variability. J. Climate, 22, 1920-1933. https://doi.org/10.1175/2008JCLI2548.1
  10. Haigh, J. D., M. Blackburn, and R. Day, 2005: The response of tropospheric circulation to perturbations in lower-stratospheric temperature. J. Climate, 18, 3672-3685. https://doi.org/10.1175/JCLI3472.1
  11. Haynes, P. H., M. E. McIntyre, T. G. Shepherd, C. J. Marks, and K. P. Shine, 1991: On the "downward control" of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci., 48, 651-678. https://doi.org/10.1175/1520-0469(1991)048<0651:OTCOED>2.0.CO;2
  12. Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825-1830. https://doi.org/10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2
  13. Huang, J., W. Tian, J. Zhang, Q. Huang, H. Tian, and J. Luo, 2017: The connection between extreme stratospheric polar vortex events and tropospheric blockings. Q. J. R. Meteorol. Soc., 143, 1148-1164, doi: 10.1002/qj.3001.
  14. Isaksen, I. S. A., and Coauthors, 2012: Attribution of the Arctic ozone column deficit in March 2011. Geophys. Res. Lett., 39, L24810, doi:10.1029/2012GL053876.
  15. Jucker, M., S. Fueglistaler, and G. K. Vallis, 2014: Stratospheric sudden warmings in an idealized GCM. J. Geophys. Res. Atmos., 119, 11054-11064, doi:10.1002/2014JD022170.
  16. Karpechko, A. Y., P. Hitchcock, D. H. Peters, and A. Schneidereit, 2017: Predictability of downward propagation of major sudden stratospheric warmings. Q. J. R. Meteorol. Soc., 143, 1459-1470, doi:10.1002/qj.3017.
  17. Kim, J., and S.-W. Son, 2015: Formation and maintenance of the tropical cold-point tropopause in a dry dynamiccore GCM. J. Atmos. Sci., 72, 3097-3115, doi: 10.1175/JAS-D-14-0338.1.
  18. Kim, S. Y., and S. W. Son, 2020: Breakdown of the linear relationship between the Southern Hemisphere Hadley cell edge and jet latitude changes in the Last Glacial Maximum. J. Climate, 33, 5713-5725, doi:10.1175/JCLI-D-19-0531.1.
  19. Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan. Ser. II, 93, 5-48, doi:10.2151/jmsj.2015-001.
  20. Kuroda, Y., 2008: Effect of stratospheric sudden warming and vortex intensification on the tropospheric climate. J. Geophys. Res. Atmos., 113, D15110. https://doi.org/10.1029/2007JD009550
  21. Lawrence, Z. D., J. Perlwitz, A. H. Butler, G. L. Manney, P. A. Newman, S. H. Lee, and E. R. Nash, 2020: The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. J. Geophys. Res. Atmos., 125, e2020JD033271, doi:10.1029/2020JD033271.
  22. Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: The life cycle of the Northern Hemisphere sudden stratospheric warmings. J. Climate, 17, 2584- 2596. https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2
  23. Limpasuvan, V., D. L. Hartmann, D. W. J. Thompson, K. Jeev, and Y. L. Yung, 2005: Stratosphere-troposphere evolution during polar vortex intensification. J. Geophys. Res. Atmos., 110, D24101. https://doi.org/10.1029/2005JD006302
  24. Martineau, P., G. Chen, S.-W. Son, and J. Kim, 2018: Lower-stratospheric control of the frequency of sudden stratospheric warming events. J. Geophys. Res. Atmos., 123, 3051-3070, doi:10.1002/2017JD027648.
  25. Perlwitz, J., and N. Harnik, 2003: Observational evidence of a stratospheric influence on the troposphere by planetary wave reflection. J. Climate, 16, 3011-3026. https://doi.org/10.1175/1520-0442(2003)016<3011:OEOASI>2.0.CO;2
  26. Perlwitz, J., and N. Harnik, 2004: Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Climate, 17, 4902-4909. https://doi.org/10.1175/JCLI-3247.1
  27. Polvani, L. M., and P. J. Kushner, 2002: Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophys. Res. Lett., 29, 1114. https://doi.org/10.1029/2001GL014284
  28. Scaife, A. A., J. R. Knight, G. K. Vallis, and C. K. Folland, 2005: A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett., 32, L18715. https://doi.org/10.1029/2005GL023226
  29. Sheshadri, A., R. A. Plumb, and E. P. Gerber, 2015: Seasonal variability of the polar stratospheric vortex in an idealized AGCM with varying tropospheric wave forcing. J. Atmos. Sci., 72, 2248-2266, doi:10.1175/JAS-D-14-0191.1.
  30. Son, S.-W., and S. Lee, 2005: The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci., 62, 3741-3757. https://doi.org/10.1175/JAS3571.1
  31. Song, K., S.-W. Son, and S.-H. Woo, 2015: Impact of sudden stratospheric warming on the surface air temperature in East Asia. Atmosphere, 25, 461-472, doi:10.14191/Atmos.2015.25.3.461 (in Korean with English abstract).
  32. Song, Y., and W. A. Robinson, 2004: Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci., 61, 1711-1725. https://doi.org/10.1175/1520-0469(2004)061<1711:DMFSIO>2.0.CO;2
  33. Tripathi, O. P., A. Charlton-Perez, M. Sigmond, and F. Vitart, 2015: Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ. Res. Lett., 10, 104007, doi:10.1088/1748-9326/10/10/104007.
  34. Walker, C. C., and T. Schneider, 2005: Response of idealized Hadley circulations to seasonally varying heating. Geophys. Res. Lett., 32, L06813. https://doi.org/10.1029/2004GL022304
  35. White, I. P., C. I. Garfinkel, E. P. Gerber, M. Jucker, P. Hitchcock, and J. Rao, 2020: The generic nature of the tropospheric response to sudden stratospheric warmings. J. Climate, 33, 5589-5610, doi:10.1175/JCLI-D-19-0697.1.
  36. Williamson, D. L., J. G. Olson, and B. A. Boville, 1998: A comparison of semi-Lagrangian and Eulerian tropical climate simulations. Mon. Wea. Rev., 126, 1001-1012. https://doi.org/10.1175/1520-0493(1998)126<1001:ACOSLA>2.0.CO;2