• 제목/요약/키워드: Dynamic condition

검색결과 2,789건 처리시간 0.036초

Dynamic analysis of ROV cable considering the coupling motion of ROV cable systems

  • Cho, Kyu Nam;Song, Ha Cheol;Hong, Do Chun
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.429-440
    • /
    • 2004
  • Remotely Operated Vehicle of 6000-meters is a new conceptual equipment made to replace the manned systems for investigating the deep-sea environment, and all of the ROV systems in operational condition strongly depend on the connecting cables. In this point of view dynamics of the ROV cable system is very important for operational and safety aspects as a cable generally encounters great tension. Researches have been executed on this problem, and most of papers have been mainly focused on the operational condition of ROV system in deep sea. This paper presents the dynamic cable response analysis during ROV launching condition rather than the operational one in order to provide the design guide of a ROV cable system in this circumstance, considering the coupling effects between cable and wave-induced ship motion. To obtain the variations of cable tensions during a ROV launching, a pre-stressed harmonic response analysis was carried out. Wave-induced tensions of the cable during ROV launching were obtained in real sea states using FE modeling, and the basic design guide of a ROV cable system was obtained.

균일한 축방향 유동에 노출된 핵 연료봉의 진동특성 분석 (Vibration Characteristics of a Nuclear Fuel Rod in Uniform Axial Flow)

  • 전상윤;서정민;김규태;박남규
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1115-1123
    • /
    • 2006
  • Nuclear fuel rods are exposed to axial flow in a reactor, and flow-induced-vibration due to the flow usually causes damage in the fuel rods. Thus a prior knowledge about dynamic behavior of a fuel rod exposed to the flow condition should be provided. This paper shows that dynamic characteristics of a nuclear fuel rod depend on axial flow velocity. Assuming small lateral displacement, the effects of uniform axial flow are investigated. The analytic results show that axial flow generally reduces fuel rod stiffness and raises its damping in normal condition. Also, the critical axial velocities which make the fuel rod behavior unstable were found. That is, solving generalized eigenvalue equation of the fuel rod dynamic system, the eigenvalues with positive real part are detected. Based on the simulation results, on the other hand, it turns out that the ordinary axial flow in nuclear reactors does not affect to stability of a nuclear fuel rod even in the conservative condition.

스트레인게이지를 이용한 회전체의 축정렬 연구 (A Study on Shaft Alignment of the Rotating Machinery by Using Strain Gages)

  • 김경석;장완식;나상수;정현철
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.126-132
    • /
    • 2002
  • Misaligned shafts of the rotating machinery have caused noise, vibration. bearing failures, and stress concentration of coupling parts which decrease the efficiency and life of shaft systems. Therefore the proper shaft alignment of those system should be monitored continuously in dynamic condition. To solve these problems under dynamic condition a telemetry system is used. In this study, the condition of the least bending moment which is known by analyzing the structure and stress induced by misalignment is found. After the shaft is aligned by dial gage, a telemetry system with strain gages is installed on shaft. The relationship between bearing displacement and moment of coupling part influenced by misalignment is investigated. The moment derived from two shaft strain at the nearby coupling is measured. The bending strain is measured 5 times for average in static state as well as in dynamic state with 100∼700 rpm.

A study on the key performance indicator of the dynamic positioning system

  • Park, Kwang-Phil;Jo, A-Ra;Choi, Jin-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.511-518
    • /
    • 2016
  • The dynamic positioning system (DPS) maintains an offshore vessel's position and heading under various environmental conditions by using its own thrust. DPS is regarded as one of the most important systems in offshore vessels. So, efficient operation and maintenance of the DPS are important issues. To monitor the DPS, it is necessary to define an appropriate key performance indicator (KPI) that can express the condition of the DPS from the perspective of operational efficiency and maintenance. In this study, a new KPI for the DPS is proposed considering the efficiency of the machinery and controller, the energy efficiency, and the environmental conditions in which the DPS is operated. The KPI is defined as a function of control deviation, energy consumption, and environmental load. A normalization factor is used to normalize the effect of environmental load on the KPI. The KPI value is calculated from DPS simulation and model test data. The possibility of applying the KPI to monitoring of DPS condition is discussed by comparing the values. The result indicates the feasibility of the new KPI.

An analytical solution for finitely long hollow cylinder subjected to torsional impact

  • Wang, X.;Wang, X.Y.;Hao, W.H.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.281-295
    • /
    • 2005
  • An analytical method is presented to solve the elastodynamic problem of finitely long hollow cylinder subjected to torsional impact often occurs in engineering mechanics. The analytical solution is composed of a solution of quasi-static equation satisfied with the non-homogeneous boundary condition and a solution of dynamic equation satisfied with homogeneous boundary condition. The quasi-static solution is obtained directly by solving the quasi-static equation satisfied with the non-homogeneous boundary condition. The solution of the non-homogeneous dynamic equation is obtained by means of finite Hankel transform on the radial variable, r, Laplace transform on time variable, t, and finite Fourier transform on axial variable, z. Thus, the solution for finitely long, hollow cylinder subjected to torsion impact is obtained. In the calculating examples, the response histories and distributions of shear stress in the finitely long hollow cylinder subjected to an exponential decay torsion load are obtained, and the results have been analyzed and discussed. Finally, a dynamic finite element for the same problem is carried out by using ABAQUS finite element analysis. Comparing the analytical solution with the finite element solution, it can be found that two kinds of results obtained by means of two different methods agree well. Therefore, it is further concluded that the analytical method and computing process presented in the paper are effective and accurate.

Dynamic analysis of Pine Flat dam-reservoir system utilizing Hagstrom-Warburton truncation boundary condition

  • Solmaz Dehghanmarvasty;Vahid Lotfi
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.365-389
    • /
    • 2023
  • Dynamic analysis of a typical concrete gravity dam-reservoir system is formulated by FE-(FE-TE) approach (i.e., Finite Element-(Finite Element-Truncation Element)). In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the H-W (i.e., Hagstrom-Warburton) high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially reviewed which was originally proposed in a previous study. Thereafter, the response of Pine Flat dam-reservoir system is studied due to horizontal and vertical ground motions for two types of reservoir bottom conditions of full reflective and absorptive. It should be emphasized that study is carried out under high order of H-W condition applied on the truncation boundary. The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by FE-(FE-HE) approach (referred to as exact method). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

착용형 심장활동 모니터링 시스템을 활용한 정신적 스트레스 평가 (The Assessment of Dynamic Mental Stress with Wearable Heart Activity Monitoring System)

  • 김경섭;신승원;이정환;최희정
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.1109-1115
    • /
    • 2008
  • In the ubiquitous health monitoring environments, it is quite important not only to evaluate the physiological health condition but also mental stress condition. In order to achieve this goal, a heart activity monitoring system utilizing a wearable bipolar electrode is devised and the heart rate variability(HRV) is extracted and interpreted in both frequency and time feature domains. Consequently, to evaluate the emotional stress condition of the subjects, a stress-induced experimental protocol was applied to healthy subjects and the time and frequency features of heart activity were analyzed in terms of the ratio of low frequency components v.s., high frequency components and the relevant the moving average distributions compromising the successive RR peaks intervals in the ambulatory ECG measurement system.

PH 수명분포를 갖는 보증제품의 수리-교체 전략 (Repair-Replacement Strategies for Warranted Items with Phase-Type Lifetimes)

  • 김호균;;배창옥;김승철
    • 대한산업공학회지
    • /
    • 제31권4호
    • /
    • pp.341-348
    • /
    • 2005
  • This paper is concerned with the question of servicing warranties for repairable items. During the warranty period, each time an item fails the manufacturer has the obligation to restore the item to operational condition either by repairing the item or by replacing it with a new item. In this paper, we consider repair-replacement strategies based on the condition of the failed item. For products with phase-type lifetime distributions where the phases represent the condition of the item, we develop algorithms to determine the expected cost of servicing a warranty and use it in making the repair-replacement decision. Illustrative numerical examples are presented. We also propose a dynamic strategy by taking the expected remaining warranty cost into consideration.

정합조건을 만족하지 않는 모델 추종 슬라이딩 모드를 이용한 강인 제어기의 설계 (Design of Robust Controller Using Model Following Sliding Mode Without Matching Condition)

  • 김민찬;박승규;안호균;곽군평;남징락
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2191-2193
    • /
    • 2004
  • The Sliding Mode Control is more robust and give the better performance than the $H_{\infty}$ control if the matching condition is satisfied. So in this paper, a controller which can have the advantages of $H_{\infty}$ control and the SMC is proposed to add the robustness of the SMC to the $H_{\infty}$ controller. The dynamic of proposed sliding surface is the same dynamic as the system controlled by $H_{\infty}$ controller without the uncertainties which satisfy the matching condition.

  • PDF

상태감시시스템을 이용한 팬터그래프-전차선로 동특성 분석에 관한 연구 (Analysis for the dynamic responses of pantograph-overhead contact line coupled system by using a condition monitoring system)

  • 조용현;박영;이기원;권삼영;박현준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.778-781
    • /
    • 2008
  • The aim of this paper is to analyze the dynamic responses of pantograph-overhead contact line coupled system by using a condition monitoring system. The monitoring items are strain, vertical displacement and acceleration of a contact wire. Both strain and vertical displacement in the contact wire depends on uplift force and train velocity. Measurement of acceleration shows that the passage of the pantograph gives an impact force to a hard point on a contact wire.

  • PDF