• Title/Summary/Keyword: Dynamic coefficient

Search Result 1,302, Processing Time 0.022 seconds

An Inductance Voltage Vector Control Strategy and Stability Study Based on Proportional Resonant Regulators under the Stationary αβ Frame for PWM Converters

  • Sun, Qiang;Wei, Kexin;Gao, Chenghai;Wang, Shasha;Liang, Bin
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1110-1121
    • /
    • 2016
  • The mathematical model of a three phase PWM converter under the stationary αβ reference frame is deduced and constructed based on a Proportional-Resonant (PR) regulator, which can replace trigonometric function calculation, Park transformation, real-time detection of a Phase Locked Loop and feed-forward decoupling with the proposed accurate calculation of the inductance voltage vector. To avoid the parallel resonance of the LCL topology, the active damping method of the proportional capacitor-current feedback is employed. As to current vector error elimination, an optimized PR controller of the inner current loop is proposed with the zero-pole matching (ZPM) and cancellation method to configure the regulator. The impacts on system's characteristics and stability margin caused by the PR controller and control parameter variations in the inner-current loop are analyzed, and the correlations among active damping feedback coefficient, sampling and transport delay, and system robustness have been established. An equivalent model of the inner current loop is studied via the pole-zero locus along with the pole placement method and frequency response characteristics. Then, the parameter values of the control system are chosen according to their decisive roles and performance indicators. Finally, simulation and experimental results obtained while adopting the proposed method illustrated its feasibility and effectiveness, and the inner current loop achieved zero static error tracking with a good dynamic response and steady-state performance.

Nanotribological Characterization of Annealed Fluorocarbon Thin Film in N2 and Vacuum (질소와 진공 분위기에서 에이징 영향에 따른 불화유기박막의 나노트라이볼러지 특성 평가)

  • 김태곤;김남균;박진구;신형재
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.193-197
    • /
    • 2002
  • The tribological properties and van der Waals attractive forces and the thermal stability of films are very important characteristics of highly hydrophobic fluorocarbon (FC) films for the long-term reliability of nano system. The effect of thermal annealing on films and van der Waals attractive forces and friction coefficient of films have been investigate d in this study. It was coated Al wafer which was treated O2 and Ar that ocatfluorocyclobutane ($C_4_{8}$) and Ar were supplied to the CVD chamber in the ratio of 2:3 for deposition of FC Films. Static contact angle and dynamic contact angle were used to characterize FC films. Thickness of films was measured by variable angle spectroscopy ellipsometer (VASE). Nanotribological data was got by atomic force microscopy (AFM) to measure roughness, lateral force microscopy (LFM) to measure friction force, and force vs. distance (FD) curve to evaluate adhesion force. FC films were cured in N2 and vacuum. The film showed the slight changes in its properties after 3 hr annealing. FTIR ATR studies showed the decrease of C-F peak intensity in the spectra as the annealing time increased. A significant decrease of film thickness has been observed. The friction force of Al surface was at least thirty times higher than ones with FC films. The adhesive force of bare Al was greater than 100 nN. After deposit FC films adhesive force was decreased to 40 nN. The adhesive force of films was decreased down to 10 nN after 24 hr annealing. During 24 hr annealing in $N_2$and vacuum at $100^{\circ}C$ film properties were not changed so much.

  • PDF

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Transient aerodynamic forces of a vehicle passing through a bridge tower's wake region in crosswind environment

  • Ma, Lin;Zhou, Dajun;Han, Wanshui;Wu, Jun;Liu, Jianxin
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.211-234
    • /
    • 2016
  • Super long-span bridges provide people with great convenience, but they also bring traffic safety problems caused by strong wind owing to their high decks. In this paper, the large eddy simulation together with dynamic mesh technology in computational fluid dynamics (CFD) is used to explore the mechanism of a moving vehicle's transient aerodynamic force in crosswind, the regularity and mechanism of the vehicle's aerodynamic forces when it passes through a bridge tower's wake zone in crosswind. By comparing the calculated results and those from wind tunnel tests, the reliability of the methods used in the paper is verified on a moving vehicle's aerodynamic forces in a bridge tower's wake region. A vehicle's aerodynamic force coefficient decreases sharply when it enters into the wake region, and reaches its minimum on the leeward of the bridge tower where exists a backflow region. When a vehicle moves on the outermost lane on the windward direction and just passes through the backflow region, it will suffer from negative lateral aerodynamic force and yaw moment in the bridge tower's wake zone. And the vehicle's passing ruins the original vortex structure there, resulting in that the lateral wind on the right side of the bridge tower does not change its direction but directly impact on the vehicle's windward. So when the vehicle leaves from the backflow region, it will suffer stronger aerodynamic than that borne by the vehicle when it just enters into the region. Other cases of vehicle moving on different lane and different directions were also discussed thoroughly. The results show that the vehicle's pneumatic safety performance is evidently better than that of a vehicle on the outermost lane on the windward.

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites (단섬유 강화 에폭시 복합재료의 열적/기계적 특성)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.530-536
    • /
    • 2009
  • A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

A Study on the Chemical Powdering Process of Polypropylene Resin for Anti-slip Floor Paint (미끄럼 방지 바닥 도료용 폴리프로필렌 수지의 화학적 분쇄에 관한 연구)

  • Kim, D.I.;Chung, H.Y.;Hwang, S.H.;Cho, I.S.;Youn, K.J.;Cho, B.S.;Kim, K.K.;Yun, K.J.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.78-83
    • /
    • 2012
  • In this study, some experimental results of the peroxide-degradation process of polypropylene(PP) in a co-rotating twin-screw extruder to produce controlled rheology polypropylene(CRPP) are presented. The peroxide was dicumyl peroxide(DCP) and the concentration of DCP was in the range 0-0.3 wt%. It was found that the rheological properties of PP change significantly during reactive extrusion. Melt flow index(MFI) increased with DCP concentration. Intrinsic viscosity decreases with increasing DCP concentration. From dynamic rheological data, number average molecular weight(Mn), weight average molecular weight(Mn) and molecular weight distribution(MWD) were calculated. Results indicated that Mw decreases and MWD becomes narrower with increasing peroxide concentration. Especially, particle size distribution of CRPP decreases with increasing DCP concentration by chemical powdering process, and anti-slip floor paint, CRPP(DCP 0.2 wt%) powder by 10phr was friction coefficient 2.15 ${\mu}$, abrasion resistance 511.18%.

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

A Dynamic Transmission Rate Allocation Algorithm for Multiplexing Delay-sensitive VBR-coded Streams (VBR로 부호화된 지연 민감 서비스의 다중화를 위한 동적인 전송률 할당 알고리즘)

  • 김진수;유국열;이문노
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7B
    • /
    • pp.628-637
    • /
    • 2003
  • This paper describes a novel multiplexing scheme for delay-sensitive multiple VBR-coded bit streams in live multimedia service offered to high-speed networks. The primary goal of multiplexing in this paper is to keep delay limits of each bit streams and to enhance network resource utilization when they no multiplexed and transmitted over network. For this aim, this paper presents a dynamical control scheme which does not cause violation of any delay constraints to each bit steam. The scheme is based on the assumption that recent behavior of the each bit scream has high correlation with near-term future behavior. Such property is used to make as flat as possible by both temporal averaging on a stream-by-stream and spatial averaging is introduced when multiple VBR-coded bit streams are multiplexed. The effectiveness of the scheme is evaluated by several simulation using an MPEG-coded video trace of Star_wars and it is shown that the proposed scheme can effectively reduce the feat rate md coefficient of variation of the multiplexed transmission rate.

The Optimum Design of Impact Absorbing System for Spreader in System Variations (스프레더용 충격흡수기의 시스템 변화에 따른 최적설계)

  • Hong, Do-Kwan;Kim, Dong-Young;Han, Dong-Seop;Ahn, Chan-Woo;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.311-316
    • /
    • 2002
  • On this study, to develop the impact absorbing system for spreader, we operated the dynamic response for models of three types consisting of spring and oil damper by the finite element analysis. Also, in the three types of impact absorbing system, we set the restricted stroke of piston to the static variables and the optimum design was operated to have the minimum value of the reaction force for the impact. As the result, the direct model of two degree of freedom system has lowest value, the model of one degree of freedom system has higher value than that and the parallel model of two degree of freedom system has the highest value. And we studied the effect that the change of spring constant and damping coefficient affect to the reaction force and as the result of the optimum design, we found that reaction force has the lowest value in the each of models.

Development of Stochastic Real-Time Forecast System by Storage Function Method (저류함수법을 이용한 추계학적 실시간 홍수예측모형 개발)

  • Bae, Deok-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.449-457
    • /
    • 1997
  • This study attempts to develop a stochastic-dynamic real-time flow forecasting model for an event-orient watershed storage function model (SFM), which has been used as an official flood computation model in Korea, and to evaluate its performance for real-time flow forecast. The study area is the 747.5$\textrm{km}^2$ Hwecheon basin with outlet at Gaejin and the 8 single flow events during 1983-1986 are selected for comparison and verification of model parameter and model performance. The used model parameters in this study are the same values on field work. It is shown that results from the existing model highly depend on the events, but those from the developed model are stable and well predict the flows for the selected flood events. The coefficient of model efficiency between observed and predicted flows for the events was above 0.90. It is concluded that the developed model that can consider model and observation uncertainties during a flood event is feasible and produces reliable real-time flow forecasts on the area.

  • PDF