• Title/Summary/Keyword: Dynamic centrifuge model test

Search Result 50, Processing Time 0.02 seconds

Validation of Equivalent Shear Beam Container Using Dynamic Centrifuge Tests (동적 원심모형실험을 이용한 등가전단보 토조의 성능 검증)

  • Kim, Yoon-Ah;Lee, Hae-In;Ko, Kil-Wan;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.61-70
    • /
    • 2020
  • In dynamic centrifuge tests, equivalent shear beam (ESB) container minimizes the boundary effect between the soil model and the wall of the container so as to effectively simulate the boundary conditions of real field state. The ESB container at KAIST was evaluated to be performing properly by Lee et al. (2013). However, it is necessary to re-evaluate the performance of ESB container since the ESB container may have deteriorated over time. Thus, the performance of eight-year-old ESB container was re-evaluated through dynamic centrifuge tests. Firstly, the natural period of the empty ESB container was compared with the results of Lee et al. (2013). Then the boundary effect of sand-filled ESB container was evaluated. Results show that the dynamic behavior of the sand-filled ESB container was similar to that of the ground, despite a decrease in the natural period of the empty ESB container over time. In addition, the dynamic response of the ground built in the ESB container and the same ground simulated through numerical analysis with free-field boundary conditions were similar. Therefore, it was found that the boundary effect of the ESB container due to the decrease in the natural period was not significant.

Evaluation of Dynamic Group Pile Effect in Dry Sand by Centrifuge Model Tests (원심모형 실험을 이용한 건조토 지반에서의 군말뚝 효과 분석)

  • Yoo, Min-Taek;Cha, Se-Hwan;Choi, Jung-In;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.67-77
    • /
    • 2012
  • In this study, a series of centrifuge shaking-table tests for a $3{\times}3$ group pile and a single pile applied by sinusoidal wave was performed in dry sand for various pile spacings, ranging from three to seven times the pile diameter. A comparison of centrifuge tests of both single pile and group pile showed that the lateral ground response of the group pile was smaller than that of the single pile. In addition, the reduction in subgrade reaction for the group pile increased with decreasing pile spacing. The side piles, that is, the 1st row and 3rd row piles showed identical dynamic p-y behavior and the center pile in the 2nd row caused a lower reduction effect compared with the 1st and 3rd row piles. From the comparison between the p-y curves of the 2nd row piles, it was found that the lateral ground response of the outer pile in the 2nd row was less than that of the center pile in the 2nd row. The p-multipliers for the side piles, for the center pile and for the outer pile ranged from 0.28 to 0.77, from 0.55 to 1.0 and from 0.39 to 0.87, respectively.

Dynamic Behavior of Triaxial Micropile Under Varying Installation Angle: A Numerical Analysis (수치해석을 통한 설치 경사각도에 따른 삼축내진말뚝의 동적 거동특성)

  • Jeon, Jun-Seo;Meron Alebachew Mekonnen;Kim, Yoon-Ah ;Kim, Jong-Kwan;Yoo, Byeong-Soo ;Kwon, Tae-Hyuk;An, Sung-Yul ;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.41-51
    • /
    • 2023
  • This study employs three-dimensional simulation through FLAC3D to investigate the impact of installation angles on the dynamic characteristics of Triaxial Micropiles. The numerical model is validated against centrifuge test results to ensure accuracy. The findings reveal significant influences of the installation angle on the dynamic behavior of Triaxial Micropiles. Specifically, under seismic conditions such as the Capetown and San Fernando earthquakes, the lowest recorded values for peak bending moment and settlement occurred at an installation angle of 15 degrees. In contrast, when subjected to an artificial earthquake with a frequency of 2 Hz (Sine 2 Hz), Micropiles installed at 0 degrees exhibited the lowest peak bending moment, maximum axial load, and settlement values.

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

Effect of Cyclic Soil Model on Seismic Site Response Analysis (지반 동적거동모델에 따른 부지응답해석 영향연구)

  • Lee, Jinsun;Noh, Gyeongdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.23-35
    • /
    • 2015
  • Nonlinear soil behavior before failure under dynamic loading is often implemented in a numerical analysis code by a mathematical fitting function model with Masing's rule. However, the model may show different behavior with an experimental results obtained from laboratory test in damping ratio corresponding secant shear modulus for a certain shear strain rage. The difference may come from an unique soil characteristics which is unable to implement by using the existing mathematical fitting model. As of now, several fitting models have been suggested to overcome the difference between model and real soil behavior but consequence of the difference in dynamic analysis is not reviewed yet. In this paper, the effect of the difference on site response was examined through nonlinear response history analysis. The analysis was verified and calibrated with well defined dynamic geotechnical centrifuge test. Site response analyses were performed with three mathematical fitting function models and compared with the centrifuge test results in prototype scale. The errors on peak ground acceleration between analysis and experiment getting increased as increasing the intensity of the input motion. In practical point of view, the analysis results of accuracy with the fitting model is not significant in low to mid input motion intensity.

Verification of the Numerical Analysis on Caisson Quay Wall Behavior Under Seismic Loading Using Centrifuge Test (원심모형시험을 이용한 케이슨 안벽의 지진시 거동에 대한 수치해석 검증)

  • Lee, Jin-Sun;Park, Tae-Jung;Lee, Moon-Gyo;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.57-70
    • /
    • 2018
  • In this study, verification of the nonlinear effective stress analysis is performed for introducing performance based earthquake resistance design of port and harbor structures. Seismic response of gravitational caisson quay wall in numerical analysis is compared directly with dynamic centrifuge test results in prototype scale. Inside of the rigid box, model of the gravitational quay wall is placed above the saturated sand layer which can show the increase of excess pore water pressure. The model represents caisson quay wall with a height of 10 m, width of 6 m under centrifugal acceleration of 60 g. The numerical model is made in the same dimension with the prototype scale of the test in two dimensional plane strain condition. Byrne's liquefaction model is adopted together with a nonlinear constitutive model. Interface element is used for sliding and tensional separation between quay wall and the adjacent soils. Verification results show good agreement for permanent displacement of the quay wall, horizontal acceleration at quay wall and soil layer, and excess pore water pressure increment beneath the quay wall foundation.

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.

The Analysis of Single Piles in Weathered Soil with and without Ground Water Table under the Dynamic Condition (지진 시 풍화지반(건조/포화)에 근입된 단말뚝의 동적거동 분석)

  • Song, Su-Min;Park, Jong-Jeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.17-33
    • /
    • 2022
  • This study describes the effect of ground water table on the dynamic analysis of single piles subjected to earthquake loading. The dynamic numerical analysis was performed for different dry and saturated soils with varying the relative densities of surrounding weathered soils (SM). The test soil was a weathered soil encountered in the engineering field and bender element tests were conducted to estimate the dynamic properties of test soil. The Mohr-Coulomb model and Finn model were used for soil, dry and saturated conditions, respectively. These models validated with results of centrifuge tests. When compared with the results from the soil conditions, saturated cases showed more lateral displacement and bending moment of piles than dry cases, and this difference caused from the generation of excess porewater pressure. It means that the kinematic effect of the soil decreased as the excess pore water pressure was generated, and it was changed to the inertial behavior of the pile.

Numerical Modeling of Sloping Ground under Earthquake Loading Using UBCSAND Model (UBCSAND모델을 이용한 사면의 동적거동해석)

  • Park Sung-Sik;Kim Young-Su;Kim Hee-Joong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • A numerical procedure is presented fur evaluating seismic liquefaction on sloping ground sites. The procedure uses a fully coupled dynamic effective stress analysis with a plastic constitutive model called UBCSAND. The model was first calibrated against laboratory element behavior. This involved cyclic simple shear tests performed on loose sand with and without initial static shear stress. The numerical procedure is then verified by predicting a centrifuge test with a slope performed on loose Fraser River sand. The predicted excess pore pressures, accelerations and displacements are compared with the measurements. The results are shown to be in good agreement. The shear stress reversal patterns depend on static and cyclic shear stress levels and are shown to play a key role in evaluating liquefaction response in sloping ground sites. The sand near the slope has low effective confining stress and dilates more. When no stress reversals occur, the sand behaves in a stiffer manner that curtails the accumulated downslope displacements. The numerical procedure using UBCSAND can serve as a guide for design of new soil structures or retrofit of existing ones.

Seismic Stability Evaluation of the Breakwater Using Dynamic Centrifugal Model Test (동적원심모형 시험을 이용한 지진 시 방파제의 내진안정성 검토)

  • Kim, Young-Jun;Jang, Dong-In;Kawk, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.39-50
    • /
    • 2021
  • Recently, as the occurrence of earthquakes with a magnitude of 5.0 or higher in Korea increases, many studies and interests in seismic design are increasing. A lot of damage was caused by the Pohang earthquake in 2017, and port facilities such as a breakwater were also damaged. This study analyzed the dynamic behavior of the upright breakwater, an external facility, based on a centrifugal model experiment. A series of centrifugal model test was conducted by three different seismic waves such as Pohang Earthquake Wave, Artificial Wave I, and II. As a result, the dynamic behavior of upright breakwater was analyzed. The review showed that acceleration amplification tends to be suppressed as breakwater foundation ground increases support and stiffness through DCM reinforcement and riprap replacement.