• Title/Summary/Keyword: Dynamic buckling load

Search Result 131, Processing Time 0.022 seconds

Mechanical Characteristics of 3-dimensional Woven Composite Stiffened Panel (3차원으로 직조된 복합재 보강 패널의 기계적 특성 연구)

  • Jeong, Jae-Hyeong;Hong, So-Mang;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, a composite stiffened panel was fabricated using a three-dimensional weaving method that can reduce the risk of delamination, and mechanical properties such as buckling load and natural frequency were investigated. The preform of the stringer and skin of the stiffened panel were fabricated in one piece using T800 grade carbon fiber and then, resin (EP2400) was injected into the preform. The compression test and natural frequency measurement were performed for the stiffened panel, and the results were compared with the finite element analyses. In order to compare the performance of 3D weaving structures, the stiffened panels with the same configuration were fabricated using UD and 2D plain weave (fabric) prepregs. Compared to the tested buckling load of the 3D woven panel, the buckling loads of the stiffened panels of UD prepreg and 2D plain weave exhibited +20% and -3% differences, respectively. From this study, it was confirmed that the buckling load of the stiffened panel manufactured by 3D weaving method was lower than that of the UD prepreg panel, but showed a slightly higher value than that of the 2D plain weave panel.

Spectral Analysis of Nonliner Dynamic Response for Dynamic Instability of Shallow Elliptic Paraboloidal Shells (얕은 타원포물곡면쉘의 동적 불안정 현상의 규명을 위한 비선형 동적 응답의 스펙트럼 분석)

  • 김승덕
    • Computational Structural Engineering
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 1995
  • The dynamic instability for snapping phenomena has been studied by many researchers. There is few paper which deal with the dynamic buckling under the load with periodic characteristics, and the behavior under periodic excitation is expected the different behavior against step excitation. In this study, the dynamic direct snapping of shallow elliptic paraboloidal shells is investigated under not only step excitation but also sinusoidal and seismic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equations of motion, and examined by the Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels. The results show that the dynamic instability phenomenon carried out from stable to unstable region reveals considerably different mechanism depending on the characteristics of excitations.

  • PDF

A study on hull girder shear strength in bulk carriers for CSR and Harmonized CSR (CSR-BC와 Harmonized CSR-BC의 선체 전단 응력에 대한 비교 고찰)

  • Park, Jong Min;Lee, Kyu Ho;Lee, Sang Bok;Shin, Sung-Kwang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.46-49
    • /
    • 2015
  • Common Structural Rules (CSR) about bulk carriers and double-hull oil tankers of International Association of Classification Societies (IACS) has been applied to ships contracted for construction since April 2006. By unifying each society's rules, the difference of opinion in the between shipyard and ship owners, classification was reduced, and CSR has been evaluated by rules the safety structure more enhanced. However, The CSR about the bulk carriers and double hull oil tankers, important design content standards, such as the local scantling calculation, static/dynamic load case and corrosion margin and etc., are different. Therefore in order to combine the CSR, the Harmonized CSR for bulk carriers and double hull oil tankers (H-CSR) was issued on 1, January, 2014, and will be apply to ships contracted for construction after 1st July 2015. It is necessary to verify the H-CSR to optimize the structural arrangement because effective date is not far off. In this study, we compared the impact by rule change for the hull girder shear strength of bulk carriers between CSR and H-CSR in respect of the yielding and buckling strength.

  • PDF

A Study on the Buckling Characteristics of Single Layer Latticed Domes under Horizontal and Vertical Earthquake Motions (수평 및 수직방향 지진력을 받는 단층 래티스 돔의 좌굴 거동 특성에 관한 연구)

  • 한상을;유용주;이상주;이경수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.489-496
    • /
    • 1998
  • The single layer latticed domes have various behaviors with each geometrical shape and scale, and they are affected by vertical component as well as horizontal component of the dynamic load. And they represent ye different earthquake responses under each ground acceleration compared with another structural systems. Generally, all of the members of latticed domes undergo three dimensional deflections if they are subjected to arbitrary one dimensional horizontal load under earthquake motions. And their response characteristics are very different to their shapes, rise/span ratios, and damping mechanisms. In this study, the earthquake response behavior is verified according to the factor of each shape, rise/span ratio, and damping ratio of latticed domes, which undergo horizontal and vertical earthquake motions by numerical approaches.

  • PDF

Stability and Dynamic Behavior of Cracked Pipe Conveying Fluid (크랙을 가진 유체유동 파이프의 안정성 및 동특성 해석)

  • Youn Han-Ik;Son In-Soo;Ahn Sung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.703-708
    • /
    • 2006
  • In this paper a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the buckling instability of a cracked pipe conveying fluid subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. TI1e crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Mechanical Loads of Dropper for High Speed Electric Railway (고속 전차선로 드로퍼에 대한 기계적 하중에 관한 연구)

  • Lee, Gi-Chun;Lee, Tae-Hoon;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • The dropper supports the contact wire and is attached using various types of dropper clips on the catenary. Droppers are subject to mechanical stress from buckling during the passage of pantographs. In order to investigate failure causes for the high speed line dropper, theoretical analyses and experiments have been carried out. In this paper, mathematical formulas are derived for the pre-sag of the dropper static load. The measured values in the experiment were similar to the theoretical predictions. To analyze the cause on fracture of dropper wire, we have conducted analysis such as SEM(Scanning Electron Microscope) of fractured specimens in the field and new specimens. Finally, we performed measurement for the variation of dynamic load on the dropper when a pantograph moved at 300km/h under the Korean high speed overhead line. If such mechanical load occur repeatedly with every passing pantograph, it is possible that the dropper wire will break due to fatigue. This results will be used for special management of high speed catenary system maintenance and life estimation of dropper.

Optimal lay-up of hybrid composite beams, plates and shells using cellular genetic algorithm

  • Rajasekaran, S.;Nalinaa, K.;Greeshma, S.;Poornima, N.S.;Kumar, V. Vinoop
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.557-580
    • /
    • 2003
  • Laminated composite structures find wide range of applications in many branches of technology. They are much suited for weight sensitive structures (like aircraft) where thinner and lighter members made of advanced fiber reinforced composite materials are used. The orientations of fiber direction in layers and number of layers and the thickness of the layers as well as material of composites play a major role in determining the strength and stiffness. Thus the basic design problem is to determine the optimum stacking sequence in terms of laminate thickness, material and fiber orientation. In this paper, a new optimization technique called Cellular Automata (CA) has been combined with Genetic Algorithm (GA) to develop a different search and optimization algorithm, known as Cellular Genetic Algorithm (CGA), which considers the laminate thickness, angle of fiber orientation and the fiber material as discrete variables. This CGA has been successfully applied to obtain the optimal fiber orientation, thickness and material lay-up for multi-layered composite hybrid beams plates and shells subjected to static buckling and dynamic constraints.

Seismic Fragility Analysis of Container Crane Considering Far-Fault and Near-Fault Ground Motion Characteristics (원거리와 근거리 지진파의 특성을 고려한 항만 컨테이너 크레인의 지진취약도 분석)

  • Park, Ju-Hyun;Min, Jiyoung;Lee, Jong-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The recent increase in earthquake activities has highlighted the importance of seismic performance evaluation for civil infrastructures. In particular, the container crane essential to maintaining the national logistics system with port operation requires an exact evaluation of its seismic response. Thus, this study aims to assess the seismic vulnerability of container cranes considering their seismic characteristics. The seismic response of the container crane should account for the structural members' yielding and buckling, as well as the crane wheel's uplifting derailment in operation. The crane's yielding and buckling limit states were defined using the stress of crane members based on the load and displacement curve obtained from nonlinear static analysis. The derailment limit state was based on the height of the rail, and nonlinear dynamic analysis was performed to obtain the seismic fragility curves considering defined limit states and seismic characteristics. The yield and derailment probabilities of the crane in the near-fault ground motion were approximately 1.5 to 4.7 and 2.8 to 6.8 times higher, respectively, than those in the far-fault ground motion.

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM (등분포하중 하에서 미분구적법(DQM)을 이용한 곡선 보의 내평면 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.265-274
    • /
    • 2018
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have been obtained traditionally using standard finite difference or finite element methods. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other numerical solutions or with experimental test data.