• Title/Summary/Keyword: Dynamic amplification factor

Search Result 67, Processing Time 0.026 seconds

A Study on the Analysis of Bridge Safety by Truck Platooning (차량 군집 주행에 따른 교량 안전성 분석에 관한 연구 )

  • Sangwon Park;Minwoo Chang;Dukgeun Yun;Minhyung No
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.50-57
    • /
    • 2023
  • Autonomous driving technologies have been gradually improved for road traffic owing to the development of artificial intelligence. Since the truck platooning is beneficial in terms of the associated transporting expenses, the Connected-Automated Vehicle technology is rapidly evolving. The structural performance is, however, rarely investigated to capture the effect of truck platooning on civil infrastructures.In this study, the dynamic behavior of bridges under truck platooning was investigated, and the amplification factor of responses was estimated considering several parameters associated with the driving conditions. Artificial intelligence techniques were used to estimate the maximum response of the mid span of a bridge as the platooning vehicles passing, and the importance of the parameters was evaluated. The most suitable algorithm was selected by evaluating the consistency of the estimated displacement.

Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Clay (동적 원심모형실험에 의한 점성토 지반에 근입된 말뚝지지 기초의 응답 스펙트럼 분석)

  • Kim, Sang-Yeon;Park, Jong-Bae;Park, Yong-Boo;Kim, Dong-Soo
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Site coefficient and amplification factor of current domestic Seismic Design Code (KBC-2009) have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. Accordingly, in this study dynamic centrifugal test and analysis for pile foundation into clay were achieved. and the response spectrums of free surface and basement were compared with each other. Within the period 1sec., the measured spectral acceleration of free surface and basement was bigger than the design spectral acceleration of SC and SD site. However the measured spectral acceleration of free surface and basement for the period over 1.5sec. was smaller than the design spectral acceleration of SC site. There was no severe difference of spectral acceleration according to the upper structure, embedded depth of foundation and free surface conditions. Consequently, normal domestic apartment housing for the period range over 1.5sec. could be design more economically applying these test result.

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.

Assessment of the Impact Factor and the Stress Histogram of Railway Bridges in Korea (국내 강철도 교량의 충격계수 및 응력빈도분포의 평가)

  • Choi, Jun Hyeok;Cho, Sun Kyu;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.489-500
    • /
    • 1997
  • The number of railway bridges in Korea reaches to about 3,000. Among them, the ratio of steel bridges is about 47%. Most of the long span railway bridges take the truss type, its number is 15 in Korea. These bridges have more than 30 years service life, it is expected that the damages of cracks and corrosion is going. Therefore, the estimation of fatigue life with random stress is considered as significant subject in maintenance. In this paper, the random stress was measured in bridges and counted the stress cycles using the rainflow counting method So, the stress range frequencies and their equivalent stress are obtained and the amplification factor for the span length, bridge types and traveling speed is assessed by the dynamic testing. From the results, the stress range of the stringer and the lower chord is higher than the other members and the characteristics of the stress histogram is varied to the loading system and the amount of the passing through trains. And the impact effects are depended on the traveling speed as well as the span length.

  • PDF

A Numerical Study on Improvement in Seismic Performance of Nuclear Components by Applying Dynamic Absorber (동흡진기 적용을 통한 원전기기의 내진성능향상에 관한 수치적 연구)

  • Kwag, Shinyoung;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this paper, we study the applicability of Tuned Mass Damper(TMD) to improve seismic performance of piping system under earthquake loading. For this purpose, a mode analysis of the target pipeline is performed, and TMD installation locations are selected as important modes with relatively large mass participation ratio in each direction. In order to design the TMD at selected positions, each corresponding mode is replaced with a SDOF damped model, and accordingly the corresponding pipeline is converted into a 2-DOF system by considering the TMD as a SDOF damped model. Then, optimal design values of the TMD, which can minimize the dynamic amplification factor of the transformed 2-DOF system, are derived through GA optimization method. The proposed TMD design values are applied to the pipeline numerical model to analyze seismic performance with and without TMD installation. As a result of numerical analyses, it is confirmed that the directional acceleration responses, the maximum normal stresses and directional reaction forces of the pipeline system are reduced, quite a lot. The results of this study are expected to be used as basic information with respect to the improvement of the seismic performance of the piping system in the future.

Shaking table tests of prestressed damping-isolation units using a spring and rubbers

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Im, Chae-Rim;Won, Eun-Bee
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.373-384
    • /
    • 2022
  • To improve the seismic performance of suspended ceiling structures, various vibration-damping devices have been developed. However, the devices made of metals have a limit in that they cause large deformation and seriously damages the exterior of the suspended ceiling structure from the wall. As a results, their strengthening effect of the suspended ceiling structure was minimal. Thus, this study employed a spring and vibration-proof rubber effectively controlled vibrations without increasing horizontal seismic loads on the ceiling to enhance the seismic resistance of suspended ceiling structures. The objective of the study is to examine the dynamic properties of a seismic damping-isolation unit (SDI) with various details developed. The developed SDI was composed of a spring, embossed rubbers, and prestressed bolts, which were the main factors enhancing the damping effect. The shaking table tests were performed on eight SDI specimens produced with the number of layers of embossed rubber (ns), presence or absence of a spring, prestressed force magnitude introduced in bolts (fps), and mass weight (Wm) as the main parameters. To identify the enhancement effect of the SDI, the dynamic properties of the control specimen with a conventional hanger bolt were compared to those of the SDI specimens. The SDI specimens were effective in reducing the maximum acceleration (Ac max), acceleration amplification factor (αp), relative displacement (δR), and increasing the damping ratio (ξ) when compared to the control specimen. The Ac max, αp, and δR of the SDI specimens with two rubbers, spring, and fps of 0.1fby, where fby is the yielding strength of the screw bolt were 57.8%, 58.0%, and 61.9% lower than those of the conventional hanger bolt specimens, respectively, resulting in the highest ξ (=0.127). In addition, the αp of the SDI specimens was 50.8% lower than those specified in ASCE 7 and FEMA 356. Consequently, to accurately estimate the αp of the SDI specimens, a simple model was proposed based on the functions of fps, stiffness constant of the spring (K), Wm, and ns.

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.