• 제목/요약/키워드: Dynamic Yield Condition

검색결과 59건 처리시간 0.024초

Pavement condition assessment through jointly estimated road roughness and vehicle parameters

  • Shereena, O.A.;Rao, B.N.
    • Structural Monitoring and Maintenance
    • /
    • 제6권4호
    • /
    • pp.317-346
    • /
    • 2019
  • Performance assessment of pavements proves useful, in terms of handling the ride quality, controlling the travel time of vehicles and adequate maintenance of pavements. Roughness profiles provide a good measure of the deteriorating condition of the pavement. For the accurate estimates of pavement roughness from dynamic vehicle responses, vehicle parameters should be known accurately. Information on vehicle parameters is uncertain, due to the wear and tear over time. Hence, condition monitoring of pavement requires the identification of pavement roughness along with vehicle parameters. The present study proposes a scheme which estimates the roughness profile of the pavement with the use of accurate estimates of vehicle parameters computed in parallel. Pavement model used in this study is a two-layer Euler-Bernoulli beam resting on a nonlinear Pasternak foundation. The asphalt topping of the pavement in the top layer is modeled as viscoelastic, and the base course bottom layer is modeled as elastic. The viscoelastic response of the top layer is modeled with the help of the Burgers model. The vehicle model considered in this study is a half car model, fitted with accelerometers at specified points. The identification of the coupled system of vehicle-pavement interaction employs a coupled scheme of an unbiased minimum variance estimator and an optimization scheme. The partitioning of observed noisy quantities to be used in the two schemes is investigated in detail before the analysis. The unbiased minimum variance estimator (MVE) make use of a linear state-space formulation including roughness, to overcome the linearization difficulties as in conventional nonlinear filters. MVE gives estimates for the unknown input and fed into the optimization scheme to yield estimates of vehicle parameters. The issue of ill-posedness of the problem is dealt with by introducing a regularization equivalent term in the objective function, specifically where a large number of parameters are to be estimated. Effect of different objective functions is also studied. The outcome of this research is an overall measure of pavement condition.

해수여과장치의 내진해석 (Seismic Analysis of Traveling Sea Water Screen)

  • 김흥태;이영신;박영문
    • 한국전산구조공학회논문집
    • /
    • 제24권3호
    • /
    • pp.289-294
    • /
    • 2011
  • 본 논문에서는 유한요소모델을 사용하여 원자력 발전용 해수여과장치에 대한 동적 내진해석을 수행하였다. 장치의 검증을 위해서 운전기준지진(Operating Basis Earthquake, OBE)과 안전정지지진(Safe Shutdown Earthquake, SSE)이 설계하중으로 작용하였을 때 부재에 미치는 영향을 평가하였다. 해석대상은 유한요소법을 사용하여 수학적 모델링을 완성하였고, 층응답스펙트럼(Floor Response Spectrum, FRS)에 따른 지진하중과 사하중 등을 적용하여 해석을 수행하였다. 해석된 해수여과장치의 최대변위는 OBE 조건에서 2.5mm이고, SSE 조건에서 최대변위는 4.6mm이다. 최대응력은 OBE 조건에서 24MPa, SSE 조건에서 44MPa이며, 이 값은 재료의 항복강도의 각각 18%, 27% 수준이다. 이에 따라 지진하중 조건에 따른 해수여과장치의 구조적 안전성이 제시되었다.

해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가 (Design of Oceanography Buoy - Part II: Mooring System)

  • 금동민;김태우;한대석;이원부;이제명
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

해양구조물용 고압 컨트롤 밸브에 대한 기초 연구 (A Fundamental Study on Offshore Structures of high pressure control valve)

  • 이치우;장성철
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.883-888
    • /
    • 2010
  • This study have goal with conceptual design for Offshore Structures of high pressure control valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the Offshore Structures high pressure control valve. Numerical simulation using CFD (Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the glycerin (C3H8O3). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated until increasing 1bar to 10bar. CFD analysis used STAR-CCM+ which is commercial code and Governing equations were calculated by moving mesh which is rotated 90 degrees when ball valve operated opening and closing in 1 degree interval. The result shows change of mass flow rate according to opening and closing angle of valve, Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. Relation with flow and flow coefficient can not be proportional according to inlet pressure when compare with mass flow rate. Because flow coefficient have influence in flow and pressure difference. Namely, flow can be change even if it has same Cv value. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

두개의 제어기를 사용한 건물 내부의 온도변화와 에너지소비량을 계산하기 위한 해석적 연구 (A study on the analytical method for calculating the inside air temperature transient and energy consumption load of the building using two different controllers)

  • 한규일
    • 수산해양기술연구
    • /
    • 제48권1호
    • /
    • pp.82-90
    • /
    • 2012
  • Four different buildings having various wall construction are analyzed for the effect of wall mass on the thermal performance and inside building air and wall temperature transient and also for calculating the energy consumption load. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one-dimensional, linear, partial differential equations is obtained using the Laplace transform method, Bromwich and modified Bromwich contour method. A simple dynamic model using steady state analysis as simplified methods is developed and results of energy consumption loads are compared with results obtained using the analytical solution. Typical Meteorological Year data are processed to yield hourly average monthly values. This study is conducted using weather data from two different locations in Korea: Daegu having severe weather in summer and winter and Jeju having mild weather almost all year round. There is a significant wall mass effect on the thermal performance of a building in mild weather condition. Buildings of heavyweight construction with insulation show the highest comfort level in mild weather condition. A proportional controller provides the higher comfort level in comparison with buildings using on-off controller. The steady state analysis gives an accurate estimate of energy load for all types of construction. Finally, it appears that both mass and wall insulation are important factors in the thermal performance of buildings, but their relative merits should be decided in each building by a strict analysis of the building layout, weather conditions and site condition.

자금조달환경과 건설업체 경영상태 간의 관계성 분석 연구 (A Relation between Financing Conditions and Business Operation of a Construction Company)

  • 서정범;이상효;김재준
    • 한국디지털건축인테리어학회논문집
    • /
    • 제12권1호
    • /
    • pp.61-70
    • /
    • 2012
  • A construction project is very costly and takes a long time to make investment and yield profit. For this reason, financial institutions are cautious about financing construction projects. Meanwhile, a construction company needs financing from financial institutions to cover a large expense of a construction project. Thus, there is likely to be a close correlation between financing conditions and business operation of a construction company. To examine the relationship, variables were identified that are related to insolvency of a construction company and changes in financing conditions. The analysis period is between the second quarter of 2001 and the fourth quarter of 2010. Data was retrieved from TS2000 established by Korea Listed Companies Association (KLCA), Statistics Office, and Construction Economy Research Institute of Korea (CERIK). In terms of methodology, VECM (Vector Error Correction Model) was used to analyze dynamic relationship between changes in financing conditions and insolvency of a construction company based on the identified variables. The hypothesis was that changes in financing conditions would significantly affect business of a construction company, but, the analysis did not find a close relation between the two factors. However, it was shown that poor business of a construction company affects financing conditions adversely.

MR 댐퍼를 적용한 6WD 군용차량의 성능평가 (Performance Evaluation of 6WD Military Vehicle Featuring MR Damper)

  • 하성훈;최승복;이은준;강필순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어 (Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller)

  • 강성준;고재섭;최정식;백정우;장미금;김순영;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.363-366
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction motor. This strategy is proposed which is simple in structure and has the honest goal of minimizing the stator current magnitude for given load torque. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

  • PDF

유도전동기의 최대토크 제어를 위한 인공지능 PI 제어기 개발 (Development of Artificial Intelligent PI controller for Maximum Torque Control of Induction Motor)

  • 강성준;고재섭;최정식;백정우;장미금;문주희;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.587-588
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed using artificial intelligent PI(AIPI) controller. Also, this paper is proposed control of maximum torque per ampere(MTPA) of induction motor. The performance of the proposed induction motor drive with maximum torque control using AIPI controller is verified by analysis results at dynamic operation conditions.

  • PDF

MR댐퍼를 적용한 6WD 군용차량의 성능평가 (Performance Evaluation of 6WD Military Vehicle Featuring MR Damper)

  • 하성훈;최승복;이은준;강필순
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.17-23
    • /
    • 2009
  • This paper proposes a new type of MR(magnetorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is established by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the imposed vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.