• Title/Summary/Keyword: Dynamic Windows

Search Result 128, Processing Time 0.032 seconds

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Design, Implementation and Test of New System Software Architecture for Autonomous Underwater Robotic Vehicle, ODIN-III (시험용 자율 무인 잠수정, ODIN-III의 새로운 시스템 소프트웨어 구조의 설계와 구현 및 실험)

  • 최현택;김진현;여준구;김홍록;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.442-449
    • /
    • 2004
  • As underwater robotic vehicles (URVs) become attractive for more sophisticated underwater tasks, the demand of high performance in terms of accuracy and dexterity has been increased. An autonomous underwater robotic vehicle, ODIN (Omni-Directional Intelligent Navigator) was designed and built at the Autonomous Systems Laboratory of the University of Hawaii in 1991. Since 1991, various studies were conducted on ODIN and have contributed to the advancement in underwater robotics. Its refurbished model ODIN II was based on VxWorks in VMEbus. Recently, ODIN was born again as a PC based system, ODIN III with unique features such as new vehicle system software architecture with an objective-oriented concept, a graphical user interface, and an independent and modular structure using a Dynamic Linking Library (DLL) based on the Windows operating system. ODIN III software architecture offers an ideal environment where various studies for advanced URV technology can be conducted. This paper describes software architecture of ODIN III and presents initial experimental results of fine motion control on ODIN III.

A Study on the Limitation and Improvement of Simple Window Model applied to EnergyPlus (EnergyPlus에 적용된 Simple Window Model의 한계와 개선에 관한 연구)

  • Kim, Tae Ho;Ko, Sung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.10
    • /
    • pp.515-529
    • /
    • 2017
  • EnergyPlus, which is widely used in various fields, provides Simple Window Model, a window model that can be used practically. However, the results of building load using the model are different from those of the standard model. The main cause of the deviation by Simple Window Model was analyzed to be due to the assumption that all windows were considered as single layer. The purpose of this study is to propose a window model that improves the cause of deviation by Simple Window Model and can be easily calculated from the algebraic relations. The proposed window model solved the heat balance equation algebraically by using seven window characteristic coefficients. The coefficient relationships consisted of the heat transmission coefficient and solar heat gain coefficient as input parameters make practical use and calculation possible. As a result of comparing the deviation between each window model by implementing the dynamic analysis method, the proposed window model showed that the deviation of the total heating/cooling energy consumption was reduced to 1/3 compared to Simple Window Model for one year. Although the maximum energy consumption did not show any significant improvement, the indoor temperature evaluation showed significantly reduced deviation.

A Tool for Signature-Based Identification of Safe Open-Source Functions Toward Efficient Malware Analysis (악성코드의 효율적인 분석을 위한 안전한 오픈소스 함수에 대한 시그니처 기반 식별 도구)

  • Lee, Seoksu;Yang, Jonghwan;Jung, Woosik;Kim, Yeongcheol;Cho, Eun-Sun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.721-729
    • /
    • 2017
  • In order to take rapid action against malware, efficiency in malware analysis is essential. For instance, it would be helpful to identify and eliminate open-source function bodies or other safe portions out of the target binary codes. In this paper, we propose an tool to create open source dynamic link library files in Windows environment, extract signature information by opensource and compiler version, and compare open source function information to find suspicious function. In addition, the tool can save the information used in the comparison to the DB and use it later, reducing the analysis time overhead.

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF

Networked Control System Using RTT Measurement over USN (RTT 측정을 이용하는 USN 기반 Networked Control System)

  • Yi, Hyun-Chul;Kim, Yu-Jong;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1040-1044
    • /
    • 2012
  • We design a NCS (Networked Control System) where the communication between sensors and controllers takes place over a USN (Ubiquitous Sensor Network). In order to measure time delays between sensors and controllers in real time, we design an algorithm to measure RTT (Round Trip Time) between USN nodes, and implement it into TinyOS of USN. By using the measured time delays, we construct the Smith predictor to compensate the time delays between sensors and controllers in real-time. For the real time experiment, we simulate the dynamic plant model, controller, and USN interface using Real-Time Windows Target provided in MATLAB. The USN interface in the Simulink model consists of serial ports, which connect the plant output and controller with USN nodes. The experiment results show that the time delays between sensors and controllers are precisely measured in real time; the Smith predictor appropriately compensates the time delays; and the stability is achieved in the closed-loop of the NCS.

Structural identification based on incomplete measurements with iterative Kalman filter

  • Ding, Yong;Guo, Lina
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1037-1054
    • /
    • 2016
  • Structural parameter evaluation and external force estimation are two important parts of structural health monitoring. But the structural parameter identification with limited input information is still a challenging problem. A new simultaneous identification method in time domain is proposed in this study to identify the structural parameters and evaluate the external force. Each sampling point in the time history of external force is taken as the unknowns in force evaluation. To reduce the number of unknowns for force evaluation the time domain measurements are divided into several windows. In each time window the structural excitation is decomposed by orthogonal polynomials. The time-variant excitation can be represented approximately by the linear combination of these orthogonal bases. Structural parameters and the coefficients of decomposition are added to the state variable to be identified. The extended Kalman filter (EKF) is augmented and selected as the mathematical tool for the implementation of state variable evaluation. The proposed method is validated numerically with simulation studies of a time-invariant linear structure, a hysteretic nonlinear structure and a time-variant linear shear frame, respectively. Results from the simulation studies indicate that the proposed method is capable of identifying the dynamic load and structural parameters fairly accurately. This method could also identify the time-variant and nonlinear structural parameter even with contaminated incomplete measurement.

Assessment of the Daylighting Performance in Residential Building Units of South Korea through RADIANCE simulation (시뮬레이션을 이용한 주거용 건축물의 공간별 채광성능 평가)

  • Lim, Tae Sub;Lim, Hong Soo;Koo, Jae-O;Kim, Gon
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.25-32
    • /
    • 2012
  • This paper focused on the daylighting performance of residential high-rise buildings in South-Korea. the purpose of this study is to estimate the visual environment of sunlight coming into opening according to sky conditions, orientation of windows and each space of Apartment buildings. Season of the year, weather, and time of day combine with predictable movement patterns of the sun to create highly variable and dynamic daylighting conditions. Daylighting design is usually based on the dominant sky condition and the micro-climate for the building site. There are three common sky conditions: clear sky, overcast sky, and partly cloudy sky. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Easily used charts, diagrams, and software programs allow study of solar geometry for any geographic location and time of day. on the other hand, the overcast sky is characterized by diffuse and variable levels of light and has dense cloud cover over 90% of the sky. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method (하이브리드 시스템 제어 방법을 이용한 이동로봇의 자율 추행 동작제어)

  • Lee, Yong-Mi;Im, Mi-Seop;Im, Jun-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.5
    • /
    • pp.182-189
    • /
    • 2002
  • This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments