• 제목/요약/키워드: Dynamic Thermal Rating

검색결과 21건 처리시간 0.021초

Dynamic Thermal Rating of Overhead Transmission Lines Based on GRAPES Numerical Weather Forecast

  • Yan, Hongbo;Wang, Yanling;Zhou, Xiaofeng;Liang, Likai;Yin, Zhijun;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.724-736
    • /
    • 2019
  • Dynamic thermal rating technology can effectively improve the thermal load capacity of transmission lines. However, its availability is limited by the quantity and high cost of the hardware facilities. This paper proposes a new dynamic thermal rating technology based on global/regional assimilation and prediction system (GRAPES) and geographic information system (GIS). The paper will also explore the method of obtaining any point meteorological data along the transmission line by using GRAPES and GIS, and provide the strategy of extracting and decoding meteorological data. In this paper, the accuracy of numerical weather prediction was verified from the perspective of time and space. Also, the 750-kV transmission line in Shaanxi Province is considered as an example to analyze. The results of the study indicate that dynamic thermal rating based on GRAPES and GIS can fully excavate the line power potential without additional cost on hardware, which saves a lot of investment.

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

시계열 기상모델을 이용한 열적 위험확률 기반 동적 송전용량의 예측 (Prediction of Dynamic Line Rating Based on Thermal Risk Probability by Time Series Weather Models)

  • 김동민;배인수;조종만;장경;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권7호
    • /
    • pp.273-280
    • /
    • 2006
  • This paper suggests the method that forecasts Dynamic Line Rating (DLR). Thermal Overload Risk Probability (TORP) of the next time is forecasted based on the present weather conditions and DLR value by Monte Carlo Simulation (MCS). To model weather elements of transmission line for MCS process, this paper will propose the use of statistical weather models that time series is applied. Also, through the case study, it is confirmed that the forecasted TORP can be utilized as a criterion that decides DLR of next time. In short, proposed method may be used usefully to keep security and reliability of transmission line by forecasting transmission capacity of the next time.

전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템 (A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring))

  • 남석현;이수길;홍진영;김정년;정성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

Analysis on Ampacity of Overhead Transmission Lines Being Operated

  • Yan, Zhijie;Wang, Yanling;Liang, Likai
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1358-1371
    • /
    • 2017
  • Dynamic thermal rating (DTR) system is an effective method to improve the capacity of existing overhead line. According to the methodology based on CIGRE (International Council on Large Electric systems) standard, ampacity values under steady-state heating balance can be calculated from ambient environmental conditions. In this study, simulation analysis of relations between parameters and ampacity is described as functional dependence, which can provide an effective basis for the design and research of overhead transmission lines. The simulation of ampacity variation in different rating scales is described in this paper, which are determined from real-time meteorological data and conductor state parameters. To test the performance of DTR in different rating scales, capacity improvement and risk level are presented. And the experimental results show that the capacity of transmission line by using DTR has significant improvement, with low probability of risk. The information of this study has an important reference value to the operation management of power grid.

Uncertainty Analysis of Dynamic Thermal Rating of Overhead Transmission Line

  • Zhou, Xing;Wang, Yanling;Zhou, Xiaofeng;Tao, Weihua;Niu, Zhiqiang;Qu, Ailing
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.331-343
    • /
    • 2019
  • Dynamic thermal rating of the overhead transmission lines is affected by many uncertain factors. The ambient temperature, wind speed and wind direction are the main sources of uncertainty. Measurement uncertainty is an important parameter to evaluate the reliability of measurement results. This paper presents the uncertainty analysis based on Monte Carlo. On the basis of establishing the mathematical model and setting the probability density function of the input parameter value, the probability density function of the output value is determined by probability distribution random sampling. Through the calculation and analysis of the transient thermal balance equation and the steady- state thermal balance equation, the steady-state current carrying capacity, the transient current carrying capacity, the standard uncertainty and the probability distribution of the minimum and maximum values of the conductor under 95% confidence interval are obtained. The simulation results indicate that Monte Carlo method can decrease the computational complexity, speed up the calculation, and increase the validity and reliability of the uncertainty evaluation.

New DTR Estimation Method Without Measured Solar and Wind Data

  • Ying, Zhan-Feng;Chen, Yuan-Sheng;Feng, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.576-585
    • /
    • 2017
  • Dynamic thermal rating (DTR) of overhead transmission lines can provide a significant increase in transmission capacity compared to the static thermal rating. However, the DTR are usually estimated by the traditional thermal model of overhead conductor that is highly dependent on the solar, wind speed and wind direction data. Consequently, the estimated DTR would be unreliable and the safety of transmission lines would be reduced when the solar and wind sensors are out of function. To address this issue, this study proposed a novel thermal model of overhead conductor based on the thermal-electric analogy theory and Markov chain. Using this thermal model, the random variation of conductor temperature can be simulated with any specific current level and ambient temperature, even if the solar and wind sensors are out of function or uninstalled. On this basis, an estimation method was proposed to determine the DTR in the form of probability. The laboratory experiments prove that the proposed method can estimate the DTR reliably without measured solar and wind data.

주거용 건물의 창호에너지평가시스템에 관한 연구 (A Study on the Window Energy Rating Systems in Residential Buildings)

  • 김동윤;임희원;신우철
    • KIEAE Journal
    • /
    • 제16권2호
    • /
    • pp.33-41
    • /
    • 2016
  • Purpose: The window energy rating system was developed in early 1990's and various kind of rating system has been implemented in advanced country such as Europe, Australia, Canada and the US since 2000. In Korea, the Energy Consumption Efficiency Rating Indication System has been implemented to promote supply of high efficiency window since July 2012. Normally, the window energy rating system based on heat balance which considers both thermal losses and solar heat gain is used and applied only to residential buildings. However, the system used nationally only considers thermal losses and is applied to every building regardless of its usage. Therefore, in this study, we indicated problems of domestic window energy rating system and looked for improvements. Method: We analyzed thermal performance of various windows through dynamic simulation applied to detached house and compared results with those of domestic and foreign rating system. Result : Thermal performance of south windows is more affected by SHGC than U-value, and that of north windows is also affected by SHGC a lot. The difference between the results of our study and current system is statistically significant. As a result, appropriate evaluation criteria which considers solar heat gain is required.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

노후 가공송전선의 수명과 열용량의 평가 (Evaluation for Lifetime and Thermal Ratings for Aged Overhead Transmission Lines)

  • 김성덕
    • 전기전자학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2012
  • 적절한 송전용량으로 전력공급을 안정하게 유지하기 위하여 노후 가공송전선의 열용량이나 수명 평가가 더욱 중요한 관심사가 되었다. 부하정격과 이도/이격거리 모두는 송전용량을 결정하는 중요한 요소들이다. 국내의 2회선 송전선로에 대한 열용량 및 도체수명을 평가하기 위하여, 전기설비기술기준은 물론 이도 및 지상고에 대한 설계기준들이 검토된다. 상정사고를 가정하여 도체온도와 이도를 계산하고 부하용량을 증대시키기 위한 방안이 모색되었다. 본 논문에서는 노후 도체에 대한 열용량과 한계이도를 적절히 평가함으로써, 기존 전력계통의 신뢰성을 보장하기 위한 개선 방안이 제시되었다.