• Title/Summary/Keyword: Dynamic Testing

Search Result 1,040, Processing Time 0.023 seconds

Data Reduction and Analysis Technique for the Resonant Column Testing by Its Theoretical Modeling (공진주 실험의 이론적 모델링에 의한 자료분석 및 해석기법의 제안)

  • 조성호;황선근;강태호;권병성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.291-298
    • /
    • 2003
  • The resonant column testing is a laboratory testing method to determine the shear modulus and the material damping factor of soils. The method has been widely used for many applications and its importance has been increased. Since the establishment of the testing method in 1963, the low-technology electronic devices for testing and data acquisition have limited the measurement to the amplitude of the linear spectrum. The limitations of the testing method were also attributed to the assumption of the linear-elastic material in the theory of the resonant column testing and to the use of the wave equation for the dynamic response of the specimen. For the better theoretical formulation of the resonant column testing, this study derived the equation of motion and provided its solution. This study also proposed the improved data reduction and analysis method for the resonant column testing, based on the advanced data acquisition system and the proposed theoretical solution for the resonant column testing system. For the verification of the proposed data reduction and analysis method, the numerical simulation of the resonant column testing was performed by the finite element analysis. Also, a series of resonant column testing were peformed for Joomunjin sand, which verified the feasibility, of the proposed method and showed the limitations of the conventional data reduction and analysis method.

  • PDF

Theoretical and experimental dynamic characteristics of a RC building model for construction stages

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.455-475
    • /
    • 2016
  • Dynamic characteristics, named as natural frequencies, damping ratios and mode shapes, affect the dynamic behavior of buildings and they vary depending on the construction stages. It is aimed to present the effects of construction stages on the dynamic characteristics of reinforced concrete (RC) buildings considering theoretical and experimental investigations. For this purpose, a three-storey RC building model with a 1/2 scale was constructed in the laboratory of Civil Engineering Department at Karadeniz Technical University. The modal testing measurements were performed by using Operational Modal Analysis (OMA) method for the bare frame, brick walled and coated cases of the building model. Randomly generated loads by impact hammer were used to vibrate the building model; the responses were measured by uni-axial seismic accelerometers as acceleration. The building's modal parameters at these construction stages were extracted from the processed signals using the Enhanced Frequency Domain Decomposition (EFDD) technique. Also, the finite element models of each case were developed and modal analyses were performed. It was observed from the experimental and theoretical investigations that the natural frequencies of the building model varied depending on the construction stages considerably.

Mount Design of Helicopter FLIR Sensor Using Experimental Dynamic Model (실험적 동적 모델을 이용한 헬기용 FLIR 센서의 마운트 설계)

  • 조기대
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1129-1136
    • /
    • 2004
  • The structural modification to install a heavy sensor was made at the front extremities of the foreign-produced helicopter operated in the Korea Navy Mounting the sensor directly to the nose structure is unlikely to be practical because it lowers a dynamic mode of the airframe close to rotor blade passing frequencies, leading to increased helicopter vibration. Unfortunately we have no information on dynamic characteristics of the imported helicopter. So the experimental modal model derived from shake testing on the overall airframe of a working helicopter was used to solve the sensor Installation problems. The sensitivity analysis was done to evaluate what the best of modification woo)d be. Simple ID model and experimental modal data for mount system with sensor were Incorporated into overall dynamic model to assess the effects of the sensor installation on helicopter. Modal testing for the modified helicopter shows that the airframe modes are sufficiently displaced from rotor passing frequencies. The mount system has been proven fight to be sufficiently stable to meet vibration-level requirement for all required operational profiles.

Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 동적 인장실험)

  • Lim, Ji-Ho;Huh, Hoon;Kwon, Soon-Yong;Yoon, Chi-Sang;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF

Study on dynamic flexural stiffness of CFST members through Bayesian model updating

  • Shang-Jun Chen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.697-712
    • /
    • 2024
  • In this paper, the dynamic flexural stiffness of concrete-filled steel tubular (CFST) members is investigated based on vibration modal testing and a Bayesian model updating procedure. To reflect the actual service states of CFST members, a 3-stage modal testing procedure is developed for 6 circular CFST beam-columns, in which the modal parameters of the specimens under varying axial load levels are extracted. In the model updating procedure, a Timoshenko beam element model is first established, in which the influence of shear deformation and rotational inertia are incorporated. Subsequently, a 2-round Bayesian model updating strategy is proposed to calculate the dynamic flexural stiffness of the specimens, which could effectively consider the influence of physical constraints in the updating process and achieve reasonably well results. Analysis of the updating results shows that with the increase of the axial load level, degradation of the flexural stiffness is significantly influenced by the load eccentricity. It shows that the cracking of the core concrete is the primary reason for the flexural stiffness degradation of CFST beam-columns. Finally, based on comparison with equations proposed by several design standards, the calculation methods for the dynamic flexural stiffness of CFST members is recommended.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

An Experimental Study on Dynamic Deformation Properties of Rock Materials using Large Triaxial Testing Apparatus (대형진동삼축시험기를 이용한 암석재료의 동적변형특성에 관한 실험적 연구)

  • 신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.299-308
    • /
    • 2003
  • In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G$\_$max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$max/ of granite is bigger than the ratio of shale-sandstone.

  • PDF

ESTIMATION OF RIDE QUALITY OF A PASSENGER CAR WITH NONLINEAR SUSPENSION

  • Cho, S.J.;Choi, Y.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.103-109
    • /
    • 2007
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, the nonlinear characteristics of a spring and a damper of a passenger car is analyzed by dynamic experiments using the MTS single-axial testing machine. Also, a mathematical nonlinear dynamic model for the suspension is devised to estimate the ride quality using the K factor. And the effect on the variation of the parameters of the suspension is examined. The results showed that the dynamic viscosity of the oil in a damper was the parameter that most influeced the ride quality of a passenger car for the ride quality of a passenger car.

Finite Element Model Building Procedure of an External Mounting Pod for Structural Dynamic Characteristics Analysis of an Aircraft (항공기 구조 동특성 해석을 위한 외부 장착 포드의 유한요소모델 구축 절차)

  • Lee, Jong-Hak;Ryu, Gu-Hyun;Yang, Sung-Chul;Jung, Dae-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.72-77
    • /
    • 2011
  • In this study, the natural frequencies and mode shape of an external mounting pod were verified using the modal analysis and modal testing technique for a pod mounted on an aircraft. The procedure associated with the FEM building of an external mounted pod to predict the dynamic behavior of aircraft structures is described. The simplified FEM reflecting the results of the modal testing of a pod is built through the optimization, applied to the structural dynamic model of an Aircraft, used to verified the stability of vibration and flutter of an aircraft.

  • PDF

Track Irregularity Inspection Method for Commercial Vehicle (영업차량에서의 궤도비틀림 검측 방안 연구)

  • Lee Chan-Woo;Choi Eun-Young
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.768-773
    • /
    • 2003
  • The inspection of track irregularity, which is the most important index for the evaluation of the dynamic safety of the rolling stock, is performed by setting up the testing train set. The self-diagnosis for the various rolling stocks and railways can be obtained if it is possible to take the simultaneous inspection of track irregularity for the commercial vehicle while it is running and to build up a dynamic safety evaluation system. It is expected to have some good effects, such as preventing accident with the low dynamic safety, cutting cost for the testing train set and evaluating the exact influence on the rolling stock and railway. In this study, innertial measuring method, which allows us to directly measure the track irregularity from the commercial vehicle, will be considered and some overseas cases will be explored as well.

  • PDF