• Title/Summary/Keyword: Dynamic Tensile Test

Search Result 248, Processing Time 0.029 seconds

Dynamic deformation behavior of Ethylene Copolymer under high strain rate compressive loading (SHPB 기법을 사용한 고변형률 속도 하중하에서의 합성수지의 동적 변형 거동)

  • Lee, Jong-Won;Lee, Ouk-Sub;Hwang, Si-Won;Kim, S-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.371-376
    • /
    • 2004
  • It is well known that a specific experimental method such as the Split Hopkinson Pressure Bar (SHPB) technique is the simplest experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of $10^3/s{\sim}10^4/s$. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using the SHPB technique.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Prediction of the dynamic flow stress

  • Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.495-504
    • /
    • 2005
  • This article explores a constitutive equation that is able to correlate stress, strain and strain rate. In order to show the advantages of the constitutive equation here proposed and how its material parameters are obtained, data extracted from the literature, for materials as different as polymers and metallic alloys, are used. Finite element simulation of the impact behaviour of a beam is presented to highlight the care one needs to exercise when using the more traditional Cowper-Symonds equation. The present constitutive equation has shown to be accurate for a wide range of strains, stresses and strain rates.

Mechanical Property and Corrosion Resistance of Mg-Zn-Y Alloys Containing Icosahedral Phase (준결정상을 포함한 Mg-Zn-Y 합금의 기계적 특성 및 부식 저항성)

  • Kim, Do Hyung;Kim, Young Kyun;Kim, Won Tae;Kim, Do Hyang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.145-152
    • /
    • 2011
  • Mechanical and property corrosion resistance of Mg-Zn-Y alloys with an atomic ratio of Zn/Y of 6.8 are investigated using optical microscopy, scanning electron microscopy, transmission electron microscopy, uniaxial tensile test and corrosion test with immersion and dynamic potentiometric tests. The alloys showed an in-situ composite microstructure consisting of ${\alpha}$-Mg and icosahedral phase (I-phase) as a strengthening phase. As the volume fraction of the I-phase increases, the yield and tensile strengths of the alloys increase while maintaining large elongation (26~30%), indicating that I-phase is effective for strengthening and forms a stable interface with surrounding ${\alpha}$-Mg matrix. The presence of I-phase having higher corrosion potential than ${\alpha}$-Mg, decreased the corrosion rate of the cast alloy up to I-phase volume fraction of 3.7%. However further increase in the volume fraction of the I-phase deteriorates the corrosion resistance due to enhanced internal galvanic corrosion cell between ${\alpha}$-Mg and I-phase.

Elasto-Plastic Dynamic Analysis of Solids by Using SPH without Tensile Instability (인장 불안정이 제거된 SPH을 이용한 고체의 동적 탄소성해석)

  • Lee, Kyoung Soo;Shin, Sang Shup;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper elasto-plastic dynamic behavior of solid is analyzed by using smoothed particle hydrodynamics (SPH) without tensile instability which caused by a clustering of SPH particles. In solid body computations, the instability may corrupt physical behavior by numerical fragmentation which, in some cases of elastic or brittle solids, is so severe that the dynamics of the system is completely wrong. The instability removed by using an artificial stress which introduces negligible errors in long-wavelength modes. Applications to several test problems show that the artificial stress works effectively. These problems include the collision of rubber cylinders, fracture and crack of plate.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature (조선 해양 구조물용 강재의 소성 및 파단 특성 V: 온도 의존성을 고려한 변형률 속도에 관한 실험적 연구)

  • Choung, Joon-Mo;Im, Sung-Woo;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.73-84
    • /
    • 2011
  • This is the fifth in a series of companion papers dealing with the dynamic hardening properties of various marine structural steels at intermediate strain rates. Five steps of strain rate levels (0.001, 1, 10, 100, 200/s) and three steps of temperature levels (LT ($-40^{\circ}C$), RT, and HT ($200^{\circ}C$)) were taken into account for the dynamic tensile tests of three types of marine structural steels: API 2W50 and Classifications EH36 and DH36. The total number of specimens was 180 pieces. It was seen that the effects of dynamic hardening became clearer at LT than at RT. Dynamic strain aging accompanying serrated flow stress curves was also observed from high temperature tests for all kinds of steels. The dynamic hardening factors (DHFs) at the two temperature levels of LT and RT were derived at the three plastic strain levels of 0.05, 0.10, 0.15 from dynamic tensile tests. Meanwhile, no DHFs were found for the high temperature tests because a slight negative strain rate dependency due to dynamic strain aging had occurred. A new formulation to determine material constant D in a Cowper-Symonds constitutive equation is provided as a function of the plastic strain rate, as well as the plastic strain level. The proposed formula is verified by comparing with test flow stress curves, not only at intermediate strain rate ranges but also at high strain rate ranges.

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.

The effect of blast-induced vibration on the stability of underground water-sealed gas storage caverns

  • Zhou, Yuchun;Wu, Li;Li, Jialong;Yuan, Qing
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.326-334
    • /
    • 2018
  • Underground water-sealed gas storage caverns have become the primary method for strategic storage of LPG. Previous studies of excavation blasting effects on large-scale underground water-sealed gas storage caverns are rare at home and abroad. In this paper, the blasting excavation for underground water-sealed propane storage caverns in Yantai was introduced and field tests of blasting vibration were carried out. Field test data showed that the horizontal radial velocity had a major controlling effect in the blasting vibration and frequencies would not cause the vibration velocity concentration effects. In terms of the influence of blasting vibration on adjacent caverns, the dynamic finite element model in LS-DYNA soft was established, whose reliability was verified by field test data. The numerical results indicated the near-blasting side was primary zone for the structural failure and tensile failure tended to occur in the middle of the curved wall on the near-blasting side. Meanwhile, the safety criterions for adjacent caverns based on stress wave theory and according to statistic relationship between peak effective tensile stress and peak particle velocities were obtained, respectively. Finally, with Safety Regulations for Blasting in China (GB6722-2014) taken into account, a final safety criterion was proposed.

The effect of anti-stripping on asphalt mixtures depending on the types of anti-stripping agents (박리방지제에 따른 아스팔트 혼합물의 박리방지 특성 연구)

  • Kim, Won Jae;Tran Van, Phuc;Do Thanh, Chung;Park, Chang Kyu;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-135
    • /
    • 2017
  • PURPOSES: The objective of this study is to evaluate the effect of anti-stripping on asphalt mixtures constituting anti-stripping agents. METHODS : Based on the literature review, asphalt mixture added with anti-stripping agents was prepared, and these asphalt mixtures were evaluated for anti-stripping properties for each anti-stripping agent through various lab tests, namely, tensile strength ratio (TSR), dynamic immersion test, uniaxial compression test, and indirect tensile strength test (IDT). The liquid anti-stripping agents used in the lab test were premixed with each asphalt binder (PG 64-22, PG 76-22) before being mixed with the aggregate. RESULTS :The result of the TSR test revealed that the effect of anti-stripping was highest when hydrated lime and liquid anti-stripping agent W were added. The correlation coefficient $R^2$ between the TSR result and cohesion ratio is 0.99, which indicates that the sensitivity of the TSR to moisture damage is reliable from the mechanical point of view. The covering ratio of the asphalt binder to the liquid anti-stripping agent W was determined to be higher than that to the other liquid anti-stripping agents. CONCLUSIONS :It is considered that the improved moisture resistance of asphalt mixture as a result of the use of anti-stripping agents can reduce the incidence of various pavement damages such as portholes caused by stripping, and the performance life of the asphalt road pavement can be prolonged.

Fracture Behavior of Concrete Beam Subjected to Dynamic Loading (동적하중을 받는 콘크리트보의 파괴거동)

  • Kang, Sung-Hoo;Kim, Woo;Park, Sun-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.257-262
    • /
    • 1995
  • In this study, after concrete cylinders were made on the condition of varying water-to -cement ratio, and cured 80 days compressive strength and splitting tensile strength were performed and moduls of elasticy is obtained. The fracture energy was obtained by acting three point bending on the 80cm in length. This test involved static loading test and dynamic loading test. In this work, the new interrelation of the material constants was obtained clearly and the property of the mixture was inspected, including the relation between the fracture energy and all kind of the material constants.

  • PDF