• Title/Summary/Keyword: Dynamic System Simulator

Search Result 347, Processing Time 0.03 seconds

Development of Maneuvering Simulator for PERESTROIKA Catamaran using Fuzzy Inference Technique

  • Lee, Joon-Tark;Ji, Seok--Jun;Choi, Woo--Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.192-199
    • /
    • 2004
  • Navigation simulators have been used in many marine schools and manne training centers since the early 1960's. But these simulators were very expens~ve and were almost limited only in one engine system. In this paper, a catamaran with twin engine system. controlled by two remote control levers and its economic simulator based on a personal computer shall be introduced. One of the main features of catamaran is to control variously its progressing direction. In the static state, a catamaran can move into all the directions and in the dynamic state, ship can change immediately the heading and speed. Although a good navigator can skillfully operate one engine system, it is difficult to control smoothly the catamaran of twin engine system without any threat for the safety of passengers. Thus. in order to bring up the expert navigators. the development of a simulator which makes the training effective is necessary, Therefore, in this paper, a Fuzzy Inference Technique based Maneuvering Simulator for catamaran with twin engine system was developed. In general. in order to develop a catamaran simulator for effective training, first of all. its mathematical model must be acquired. According to the acquired system modeling. the dynamics of simulator is determined, But the proposed technique can omit a complex and tedious mathematical modeling procedures by using the fuzzy inference, which dependent upon only experiences of an expert and can design an efficient training program for unskillful navigators. This developed simulator was consisted of two fuzzy inference routines and two remote control levers, and was focused on effective training of navigators for the safe maneuvering to avoid a collision in a harbor.

Implementation of Facial Robot 3D Simulator For Dynamic Facial Expression (동적 표정 구현이 가능한 얼굴 로봇 3D 시뮬레이터 구현)

  • Kang, Byung-Kon;Kang, Hyo-Seok;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1121-1122
    • /
    • 2008
  • By using FACS(Facial Action Coding System) and linear interpolation, a 3D facial robot simulator is developed in this paper. This simulator is based on real facial robot and synchronizes with it by unifying protocol. Using AUs(Action Unit) of each 5 basic expressions and linear interpolation makes more various dynamic facial expressions.

  • PDF

Dynamic Characteristics of Digital Distance Relay Scheme Using Real Time Digital Simulator(RTDS) (RTDS를 이용한 Digital 거리계전기의 동특성 시험에 관한 연구)

  • Jung, Chang-Ho;Kim, Il-Dong;Kim, Yeong-Han;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.109-111
    • /
    • 1996
  • This paper describes real time dynamic tests on the digital distance relay using new digital test system including RTDS(Real Time Digital Simulator) in KEPRI. The RTDS is developed by the Manitoba HVDC Reserch Centre and consists of specialized hardware and software which allows transients simulation of electrical power systems in real time. From high impedance fault test, it is known that the characteritics of distance reach is influenced by load flow. A detailed discussion of relay test using the RTDS simulator, high impedance faults and test results are included in the paper.

  • PDF

Vibration Characteristic Analysis of Bridge Simulator by Pulse ESPI System (Pulse ESPI System을 이용한 모형교량의 진동특성해석)

  • Choi JK;Kim K.S.;Jang H.S.;Kang M.G.;Kim S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1433-1437
    • /
    • 2005
  • Until now, strain gage technique and accelerometer for the diagnosis safety of constructions are used widely. However, the limits of these methods are revealed. But Electronic Speckle Pattern Interferometry(ESPI) that uses Pulse Laser is noncontact, whole-field, real-time measuring method also dull to disturbance and can achieve test result in a very short time. It has various strong point in spot application, swift establishment, and dynamic conduct analysis for the entire field of Laser illuminate. This author analyzed vibration characteristic of using the Pulse ESPI System, the diagnosis safety of bridges, to simplify the analysis of the dynamic conduct of a large construction.

  • PDF

A Smoke Management System Design For Semiconductor Fabrication Facilities (반도체 공장의 제연설계)

  • ;Michael J. Ferreira
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.23-28
    • /
    • 2000
  • A performance-based design of smoke management systems for semiconductor fabrication facilities is described in this paper. The example of one such facility is discussed. Performance criteria for smoke control systems were established, effective smoke removal system features were identified and optimal system exhaust capacity requirements were developed by applying engineering tools including Fire Dynamic Simulator model. Considering the fact that the absence of relevant design guide, codes for consensus standards for semiconductor smoke design in Korea and United States this performance based approach can and should be applied to other fabrication facilities designs.

  • PDF

DYNAMIC ROUTE PLANNING BY Q-LEARNING -Cellular Automation Based Simulator and Control

  • Sano, Masaki;Jung, Si
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.24.2-24
    • /
    • 2001
  • In this paper, the authors present a row dynamic route planning by Q-learning. The proposed algorithm is executed in a cellular automation based traffic simulator, which is also newly created. In Vehicle Information and Communication System(VICS), which is an active field of Intelligent Transport System(ITS), information of traffic congestion is sent to each vehicle at real time. However, a centralized navigation system is not realistic to guide millions of vehicles in a megalopolis. Autonomous distributed systems should be more flexible and scalable, and also have a chance to focus on each vehicles demand. In such systems, each vehicle can search an own optimal route. We employ Q-learning of the reinforcement learning method to search an optimal or sub-optimal route, in which route drivers can avoid traffic congestions. We find some applications of the reinforcement learning in the "static" environment, but there are ...

  • PDF

Development of Autonomous Navigation System Using Simulation Based on Unity-ROS (Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증)

  • Kiwon Kim;Hyuntae Bang;Jeonghwa Seo;Wonkeun Youn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.

A Scale-down Simulator for High-speed Railway Train (고속전철 모의시험 장치)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Rim, Geun-Hie;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1140-1142
    • /
    • 2000
  • This paper describes a down-scaled model for a high-speed railway train. The propulsion system of simulator consists of four line-side converters four induction motors driven by two inverters, an eddy current braking system, two dynamic braking systems. The control algorithm of traction and braking including anti-skid control can be developed using the simulator. Simulator design procedure. control algorithm and some experimental waveforms are presented in this paper.

  • PDF

The Simulator Design for the Analysis of Aircraft Longitudinal Dynamic Characteristics (항공기 세로 동특성 해석을 위한 시뮬레이터 설계)

  • Yoon, Sun-Ju
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.4
    • /
    • pp.427-436
    • /
    • 2006
  • State-space method for the analysis of the dynamic characteristics of a body motion is set up as mathematical tool for the solution of differential equation by computer. Representation of a system is described as a simple form of matrix calculation and unique form of model is available for the linear or nonlinear, time variant or time invariant, mono variable or multi variable system etc. For the analysis of state-space method a complicated vector calculation is required, but this analysis can be simplified with the specific functions of a software package. Recently as the Graphical User Interface softwares are well-developed, then it is very simplified to execute the simulation of the dynamic characteristics for the state-space model with the interactive graphics treatment. The purpose of this study is to developed the simulator for the educational analysis of the dynamic characteristics of body motion, and for the analysis of the longitudinal dynamic characteristics of an aircraft that is primarily to design the simulator for the analysis of the transient response of an aircraft longitudinal stability.

  • PDF

Experimental Planning for Realistic Force Feedback in a Bicycle Simulator

  • Hun, Yang-Gi;Soo, Kwon-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.117.5-117
    • /
    • 2001
  • This paper presents the key idea of handlebar reaction force and pedal resistance force generation in creating life-like feeling in KAIST bicycle simulator. Also, it provides methods to evaluate its reality level with given reaction force profile. In KAIST bicycle simulator, the pedal resistance force and the handlebar reaction force are calculated using the bicycle dynamic model. With the information handlebar angle, rider´s pedaling torque and road profile transmitted from the handlebar system, the pedal system and the visual part, the bicycle dynamics engine calculates the handlebar reaction force and the pedal velocity. The handlebar system and the pedal resistance system generate reaction force and resistance force transmitted from dynamics engine. However to make more realistic riding feeling ...

  • PDF