• Title/Summary/Keyword: Dynamic Structure

Search Result 5,856, Processing Time 0.04 seconds

A Study on the Rheological Properties of Branched Polypropylene/silicate Composites (분지형 폴리프로필렌/실리케이트 복합체의 유변학적 특성 연구)

  • Dahal, Prashanta;Yoon, Kyung Hwa;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.679-684
    • /
    • 2011
  • Branched polypropylenes (LCB-PP) with a long chain branch were prepared by the solid-state and molt-state reaction. Divinylbenzene (DVB), 1,4-benzenediol (RES), and furfuryl sulphide (FS) were used as branching agents of fabricate LCB-PP/silicate composites. Chemical structures, thermal properties, and rheological properties of the LCB-PP were determined by FT-IR, DSC, TGA, and dynamic rheometer (ARES). The chemical structure of the LCB-PP was confirmed by the existence of =C-H stretching peak of the branching agent at $3100cm^{-1}$. From DSC and TGA results, the melting reaction was more effective than the solid state reaction in the manufacture of LCB-PP, which was additionally certified by rheological properties. Based on rheological properties, FS was the best for branching efficiency of PP. Compared to PP, LCB-PPs indicated an increase of complex viscosity in the low frequency and shear thinning tendency, and G'-G" plot represented an increase in elasticity and the heterogeneousness in a melt state. Rheological properties of LCB-PP/silicate composites were observed with the silicate content. When 5 wt% silicate was added in LCB-PP, distinct changes in the shear thinning and the slope of G'-G" plots were observed.

The symbolic signs in Ontology and its philosophical development (주자 천도론의 상징부호와 철학적 전개)

  • Kang, jinseok
    • The Journal of Korean Philosophical History
    • /
    • no.23
    • /
    • pp.393-421
    • /
    • 2008
  • This thesis has an intention to reorganize the topic of Ontology that has not unnoticed, investigating the symbolic signs of Zhuxi. The symbols in Ontology visualize in an anthropomorphic form or a form of animals that we can usually find in the nature. The visible symbols have characteristics of the dynamic rather than the stillness. The symbols of human and a horse have developed as different interpretations depending on the relative importance. The movement of stream symbolize the Movement of Daoti that manifests thorough all things in the Dao and have a structure of 'Ti-Xiang-Yong'. The Substance of Metaphysics embodies an action thorough 'Metaphysics' or 'with Metaphysics'. Accordingly, 'a stream' symbolizes 'the Movement of Daoti' in that it manifests the form of Daoti makes body. A kite and a fish symbolize the form of a kite flies up into the sky and the shape of a fish plays in the pond. These not only represent an outlook on the world, but also symbolize the stage of the Movement of Daoti. 'Human', 'a stream', 'a kite' and 'a fish' include activeness, domination, dynamics, manifestation, visibility, naturalness.

The Modernization of Traditional Education and the Principle of Political Education Model (전통교육의 현대화와 정치교육모델의 구성 원리)

  • Sim, Seung-woo;Yoon, Young-don;Chi, Chun-Ho;Ham, Kyu-jin
    • The Journal of Korean Philosophical History
    • /
    • no.54
    • /
    • pp.243-272
    • /
    • 2017
  • The final purpose of this study is to construct new education model through the modernization of traditional education. Our citizenship education model is expected to facilitate the democratic personality and comprise the political education program. To achieve our research project, this paper have tried to reinterpret and categorize diverse the normative, political, ideal meaning of tradition. The modernization of traditional virtue and capability is the main source of democratical citizenship against liberal representative democracy. In this context, Our education model consists of the structure of educational system, the principle of operation and the role of subject, the method of teaching through the consilience of East and West educational philosophy and practice. According to our approach to overcome and the real problems of education, modern 'Sunbei' class model can enable to form community ethics and competence. Furthermore, our new class model will contribute to becoming a democratic citizen of student and the development of Korean democracy in the future. The order of discussion in this paper runs as follows. Firstly, we will investigate into dynamic change of the traditional value on the basis of the political perspective and seek the possibility of modern reinterpretation of traditional capability. Finally, we will complete new education model including both western value and Korean traditional value and the applicable to class teaching.

A Study on Seismic Fragility of PSC Bridge Considering Aging and Retrofit Effects (PSC 교량의 노후도 및 FRP 보강 효과를 고려한 지진취약도 분석)

  • An, Hyojoon;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.34-41
    • /
    • 2020
  • In recent years, magnitude and frequency of earthquakes have increased in Korea. Damage to a bridge, which is one of the main infrastructures, can directly lead to considerable loss of human lives. Therefore, engineers need to evaluate the seismic fragility of the structure and prepare for the possible seismic damage. In particular, the number of aging bridges over 30 years of service increases, and thus the seismic analysis and fragility requires accounting for the aging and retrofit effects on the bridge. In this study, the nonlinear static and dynamic analyses were performed to evaluate the effects of the aging and FRP retrofit on a PSC bridge. The aging and FRP retrofit were applied to piers that dominate the response of the bridge during earthquakes. The maximum displacement of the bridge increased due to the aging of the pier but decreased when FRP retrofit applied to the aged pier. In addition, seismic fragility analysis was performed to evaluate the seismic behavior of the bridge combined with the seismic performance of the pier. Compared with the aged bridge, the FRP retrofit bridge showed a decrease in the seismic fragility in all levels of damage. The reduction of the seismic fragility in the FRP bridge was prominent as the value of PGA and level of damage increased.

Economic Impacts of the increase in Green Immature Citrus Demand on Jeju Field Citrus Industry (풋귤 수요증대가 제주 노지감귤 산업에 미치는 파급영향)

  • Kim, Hwa-Nyeon;Ko, Seong-Bo;Kim, Bae-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.108-114
    • /
    • 2021
  • Green colored citrus is the immature fruit of the field citrus crop in Jeju, and its demand has been growing recently as it is known to contain a large amount of carotinoid, pectin, and vitamin C. It differs from the traditional varieties of blue tangerine, which are green in February and turn in yellow in March-April. This study analyzed the effects of the increased demand in green citrus on the field citrus industry. For our analysis, a partial equilibrium supply-demand model was established with a dynamic recursive structure using data from 1989-2017. Model calibration was also conducted to determine the best supply-demand model and then, the impacts of increasing demand for green immature citrus in Jeju for 2018-2030 was simulated. The simulation results show that there is no significant impact on the producing area prior to 2022, but there is a distinguishable increase of 18ha in 2023, 52ha in 2025, and 142ha in 2030. It was also predicted that revenue would increase by KRW 7.75 billion on average from 2021-2030.

A Study on Plot Lamination methodology for the planning and analysis of storytelling (스토리텔링 기획·분석을 위한 '플롯적층' 방법론 연구)

  • Ahn, Soong-Beum
    • Journal of Popular Narrative
    • /
    • v.26 no.3
    • /
    • pp.255-288
    • /
    • 2020
  • The purpose of this study is to propose 'plot lamination methodology' for planning and analyzing of storytelling. The story contents with a certain volume of narrative might have several important characters. Most of the characters have meaningful influences on the context of the story through their choices and actions as they go through dynamic changes to construct and deconstruct relationships. The plot lamination methodology is the result of an attempt to look at the process from the 'strategic' point of view by focusing on the fact that the main characters with supplementary nature contribute to the independent formation of subplot based on the main plot driven by the protagonist. Regardless of how they live their own unique and autonomous life in the narrative, the main characters hold a relatively subordinate position within the centripetal force of the main plot. Their journeys tend to expand/emphasize/divide up the process of the main plot's 'persuasion via causality,' and also individualize into the functions of emotional sympathy (pathos), moral, ethical perspective (ethos), and rational logic (logos). As such, the subplots of main characters are laminated according to these three functional traits, which could become multi-layered through second or third laminations, depending on the number and roles of other characters. If the plot lamination methodology is further developed through follow-up studies, it will open up the possibilities of the strategic design (planning) and aesthetic criticism (analysis) regarding the procedure of conjugation /branching of subplot and/from the main plot.

Parametric Study for Seismic Design of Temporary Retaining Structure in a Deep Excavation by Dynamic Numerical Analysis (동적수치해석을 이용한 대심도 흙막이 가시설 내진설계 변수연구)

  • Yang, Eui-Kyu;Yu, Sang-Hwa;Kim, Dongchan;Kim, Jongkwan;Ha, Ik-Soo;Han, Jin-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.45-65
    • /
    • 2022
  • In this paper, a diaphragm wall that supports soils and rock was modeled using FLAC, a finite difference analysis program, to evaluate the seismic behavior of temporary retaining structures in a deep excavation. The appropriateness of the numerical model was verified by comparing its results with those of the centrifuge test performed in a similar condition. The bending moment distribution along the diaphragm wall shows a very similar tendency, and the maximum acceleration obtained at the backfill and top of the wall shows a difference within 5%. Based on the developed model, a parametric study was conducted in various input earthquake, ground, and excavation conditions. The maximum structural forces and bending moment under earthquake loading were compared with the maximum values during excavation, from which the critical condition that requires a seismic design was roughly sorted out. The maximum bending moment of a wall that retains soil layers increased 17%. Particularly, the axial force of struts located in loose soils increased 32% under 100 years return period of an earthquake event, which strongly is estimated to require seismic design for structural safety.

Analysis of Dynamics Mechanism to Regulation and Punishment of Fishing Boats using System Dynamics (시스템다이내믹스를 이용한 낚시어선의 단속과 처벌에 따른 동태적 매커니즘 분석)

  • Moon, JungHwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.270-279
    • /
    • 2022
  • In this paper, system dynamics considering dynamics and time was examined to study the changes in system structure according to reinforcement (policy intervention) of regulation and punishment for fishing boats, and the strategizing directions were analyzed. Until now, regulations and punishments on fishing boats have been conducted temporarily and short-term as a precautionary measure to prevent accidents and imposed penalties. However, due to various anomalous side effects, the expected results were not achieved, negligent accidents occurred constantly, and follow-up measures were repeated. Resultantly, the regulation and punishment of fishing boats is a reinforced safety standard, and there is a necessity to improve facilities, equipment, and industry, and develop technology (including time delay) to prevent accidents. However, as the negative (illegal) activities continue without immediate and significant resistance, the safety blind spot for accident prevention cannot be minimized. Thus, policy intervention based on linear thinking without sufficiently considering variables of the dynamic mechanism and time can distort the basic values pursued by the policy. For the regulation and punishment of fishing boats, a strategy to supplement the mechanism should be prepared prior to the preparation of reinforced safety standards. Improvement and development of related technologies, mandatory training hours for anglers, fishing industry, and related organizations, proposal of specific action plan for Fishing Management and Promotion Act for growing fishing-related industries.

Roles of Local Estrogen and Progesterone Mediated Receptors in the Regulation of Endometrial Inflammation (자궁내막 염증에 대한 지엽적 에스트로겐 및 프로게스테론 매개 수용체의 역할)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.102-113
    • /
    • 2023
  • This review discusses the cellular and molecular mechanisms by which the endometrial estrogen and progesterone receptors regulate local estrogen production, expression of the specific estrogen receptors, progesterone resistance, inflammatory responses and the differentiation and survival of endometriotic cells in endometrial inflammation. The epigenetic aberrations of endometrial stromal cells play an important role in the pathogenesis and progression of endometriosis. In particular, differential methylation of the estrogen receptor genes changes in the stromal cells the dominancy of estrogen receptor from ERα into ERβ, and results in the abnormal estrogen responses including inflammation, progesterone resistance and the disturbance of retinoid synthesis. These stromal cells also stimulate local estrogen production in response to PGE2 and the SF-1 mediated induction of steroidogenic enzyme expression, and the increased estradiol then feeds back into the ERβ to repeat the vicious inflammatory cycle through the activation of COX-2. In addition, high levels of ERβ expression may also change the chromatin structure of endometrial mesenchymal stem cells, and together with the repeated menstrual cycles can induce formation of the endometriotic tissue. The cascade of these serial events then leads to cell adhesion, angiogenesis and survival of the differentiation-disregulated stromal cells through the action of inflammatory factors such as ERβ-mediated estrogen, TNF-α and TGF-β1. Therefore, understanding of the dynamic hormonal changes during the menstrual cycle and the corresponding signal transduction mechanisms of the related nuclear receptors in endometrium would provide new insights for treating inflammatory diseases such as the endometriosis.

A Study on Optimized Artificial Neural Network Model for the Prediction of Bearing Capacity of Driven Piles (항타말뚝의 지지력 예측을 위한 최적의 인공신경망모델에 관한 연구)

  • Park Hyun-Il;Seok Jeong-Woo;Hwang Dae-Jin;Cho Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.15-26
    • /
    • 2006
  • Although numerous investigations have been performed over the years to predict the behavior and bearing capacity of piles, the mechanisms are not yet entirely understood. The prediction of bearing capacity is a difficult task, because large numbers of factors affect the capacity and also have complex relationship one another. Therefore, it is extremely difficult to search the essential factors among many factors, which are related with ground condition, pile type, driving condition and others, and then appropriately consider complicated relationship among the searched factors. The present paper describes the application of Artificial Neural Network (ANN) in predicting the capacity including its components at the tip and along the shaft from dynamic load test of the driven piles. Firstly, the effect of each factor on the value of bearing capacity is investigated on the basis of sensitivity analysis using ANN modeling. Secondly, the authors use the design methodology composed of ANN and genetic algorithm (GA) to find optimal neural network model to predict the bearing capacity. The authors allow this methodology to find the appropriate combination of input parameters, the number of hidden units and the transfer structure among the input, the hidden and the out layers. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the bearing capacity of driven piles.