• Title/Summary/Keyword: Dynamic Strain

Search Result 1,421, Processing Time 0.028 seconds

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

Dynamic Tensile Tests of Steel Sheets for an Auto-body at the Intermediate Strain Rate (중변형률 속도에서의 차체용 강판의 동적 인장실험)

  • Lim, Ji-Ho;Huh, Hoon;Kwon, Soon-Yong;Yoon, Chi-Sang;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.456-461
    • /
    • 2004
  • The dynamic behavior of sheet metals must be examined to ensure the impact characteristics of auto-body by a finite element method. An appropriate experimental method has to be developed to acquire the material properties at the intermediate strain rate which is under 500/s in the crash analysis of auto-body. In this paper, tensile tests of various different steel sheets for an auto-body were performed to obtain the dynamic material properties with respect to the strain rate which is ranged from 0.003/sec to 200/sec. A high speed material testing machine was made for tension tests at the intermediate strain rate and the dimensions of specimens that can provide the reasonable results were determined by the finite element analysis. Stress-strain curves were obtained for each steel sheet from the dynamic tensile test and used to deduce the relationship of the yield stress and the elongation to the strain rate. These results are significant not only in the crashworthiness evaluation under car crash but also in the high speed metal forming.

  • PDF

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

A study of dynamic behavior with effect of notch shape on high impact (고속충격하의 노치형상에 따른 동적거동연구)

  • 장영환;박성도;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.795-798
    • /
    • 1997
  • This study is about the dynamic behavior of steel(SM45C). Dynamic tests were performed using SHPB(Split Hopkinson Pressure Bar) which is designed and modified to be used in both tensile and compressive modes. Quasi-static compression tests were also carried out for the comparison to the dynamic results. Not only the dynamic mechanical properties but also the effect of the notch of the specimen on stress-strain curve were investigated. The dynamic test results reveal that strain and stress are sensitively affected by the notch. The depth and the number of notch increase the stress and decrease the strain.

  • PDF

Dynamic Stress/Strain Measurement and Analysis of the Aluminum Alloy Road Wheel through F1 Circuit Ultimate Driving Test (F1 서킷 극한주행시험을 통한 알루미늄 알로이 휠의 동응력/변형률 계측 및 분석)

  • Lee, Chang Soo;Park, Cheol Soon;Park, Hyung Bae;Jung, Sung Pil;Chung, Won Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.612-617
    • /
    • 2014
  • It is generally known that the automotive road wheel involves the non-proportional multiaxial loading condition, therefore the measuring dynamic stress and strain in driving state is very important to predict an endurance characteristic of the automotive road wheel. In this study, the ultimate driving test using F1 circuit with respect to 2 kinds of velocity conditions have been carried out in order to measure dynamic stress, strain of the wheel and acceleration of a vehicle. Based on the measured results, the characteristics of dynamic stress generation have been analyzed, and factors which have effect on the dynamic stress generation have been studied.

  • PDF

Dynamic deformation behavior of Ethylene Copolymer under high strain rate compressive loading (SHPB 기법을 사용한 고변형률 속도 하중하에서의 합성수지의 동적 변형 거동)

  • Lee, Jong-Won;Lee, Ouk-Sub;Hwang, Si-Won;Kim, S-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.371-376
    • /
    • 2004
  • It is well known that a specific experimental method such as the Split Hopkinson Pressure Bar (SHPB) technique is the simplest experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of $10^3/s{\sim}10^4/s$. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using the SHPB technique.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Dynamic-strain analysis using fiber Bbragg grating sensor (광섬유 브래그 격자 센서를 이용한 동적 스트레인 신호의 해석)

  • 송민호;이상배;최상삼;이병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.79-83
    • /
    • 1998
  • We analyzed dynamic-strain perturbations applied to a fiber Bragg grating. The fiber Mach-Zehnder interferometer was used, and by analyzing the interference signal wecould obtain the frequency and relative amplitude information of the dynamic-perturbation. The minimum detectable dynamic-strain using the system was ~9.5 nstrain RMS/.root.(Hz) at 500 Hz. Also we proposed and demonstrated a new method which uses a temperature-discriminating dual-trating sensor head. With the method, we could measure the dynamic -strain as well as static-static-strain even for the case in which the optical pathe difference modulation was applied.

  • PDF

The Prediction of Dynamic Recrystallization and Grain Size of 304 Stainless Steel during Hot Deformation (304 스테인리스강의 열간동적재결정과 미세조직 예측)

  • 권영표;조종래;이성열;이정환
    • Transactions of Materials Processing
    • /
    • v.10 no.7
    • /
    • pp.573-578
    • /
    • 2001
  • The flow stress of 304 stainless steel during hot forming process were determined by conducting hot compression tests at the range of 1273 K∼1423 K and 0.05 /s∼2.0 /s as these are typical temperature and strain rate in hot forging operation. In this material, Dynamic recrystallization was found to be the major softening mechanism with this conditions as Previous studies. Based on the observed phenomena, a constitutive model of flow stress was assumed as a function of strain, strain rate, temperature. In the constitutive model, the effects of strain hardening and dynamic recrystallization were taken into consideration. A finite element method connected to constitutive model was performed to predict the dynamic recrystallization behaviors and also stress-strain curves in hot compression of 304 stainless steel.

  • PDF

Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate

  • Moon, Wonjoo;Seo, Songwon;Lim, Jaeyoung;Min, Oakkey
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1412-1419
    • /
    • 2002
  • Dynamic shear tests for the tough-pitch copper at high strain and high strain rate was performed. The Split Hopkinson Pressure Bar (SHPB) compression test system was modified to yield a shear deformation in the specimen. Hat-shaped specimens for the tough-pitch copper were adopted to generate high strain of γ=3~4 and high strain-rate of γ= 10$^4$/s. The dynamic analysis by ABAQUS 5.5/EXPLICIT code verified that shear zone can be localized in hat-shaped specimens. A proper impact velocity and the axial length of the shear localization region wert determined through the elastic wave analysis. The displacement in a hat-shaped specimen is limited by a spacer ring which was installed between the specimen and the incident bar. The shear bands were obtained by measuring the direction of shear deformation and the width of deformed grain in the shear zone. The decrease of specimen length has been measured on the optical displacement transducer. Dynamic shear stress-strain relations in the tough-pitch copper were obtained at two strain-rates.