• Title/Summary/Keyword: Dynamic Soil Stiffness

Search Result 148, Processing Time 0.025 seconds

Centrifuge Test for Earthquake Response of Structures with Basements (지하층이 있는 구조물의 지진응답을 위한 원심모형실험)

  • Kim, Dong Kwan;Park, Hong Gun;Kim, Dong Soo;Ha, Jeong Gon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.223-234
    • /
    • 2016
  • To investigate earthquake responses of structures with basements affected by soil deposits, centrifuge tests were performed using an in-flight earthquake simulator. The test specimen was composed of a single-degree-of-freedom structure model, a basement and sub-soil deposits in a centrifuge container. The test parameters were the dynamic period of the structure model, boundary conditions of the basement, existence of soil deposits, centrifugal acceleration level, and type and level of input earthquake accelerations. When soil deposits did not exist, the earthquake responses of the structures with fixed basement were significantly greater than those of the structure without basement. Also, the earthquake responses of the structures with the fixed basement surrounded by soil deposits were amplified, but the amplifications were smaller than those of the structures without basement. The earthquake responses of the structures with the half-embedded basement in the soil deposits were greater than those estimated by the fixed base model using the measured free-field ground motion. The test showed that the basement and the soil deposit should be simultaneously considered in the numerical analysis model, and the stiffness of the half-embedded was not effective.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

Time-domain analyses of the layered soil by the modified scaled boundary finite element method

  • Lu, Shan;Liu, Jun;Lin, Gao;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1055-1086
    • /
    • 2015
  • The dynamic response of two-dimensional unbounded domain on the rigid bedrock in the time domain is numerically obtained. It is realized by the modified scaled boundary finite element method (SBFEM) in which the original scaling center is replaced by a scaling line. The formulation bases on expanding dynamic stiffness by using the continued fraction approach. The solution converges rapidly over the whole time range along with the order of the continued fraction increases. In addition, the method is suitable for large scale systems. The numerical method is employed which is a combination of the time domain SBFEM for far field and the finite element method used for near field. By using the continued fraction solution and introducing auxiliary variables, the equation of motion of unbounded domain is built. Applying the spectral shifting technique, the virtual modes of motion equation are eliminated. Standard procedure in structural dynamic is directly applicable for time domain problem. Since the coefficient matrixes of equation are banded and symmetric, the equation can be solved efficiently by using the direct time domain integration method. Numerical examples demonstrate the increased robustness, accuracy and superiority of the proposed method. The suitability of proposed method for time domain simulations of complex systems is also demonstrated.

Evaluation of Particle Size Effect on Dynamic Behavior of Soil-pile System (모래 지반의 입자크기가 지반-말뚝 시스템의 동적 거동에 미치는 영향 평가)

  • Han, Jin-Tae;Yoo, Min-Taek;Yang, Eui-Kyu;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.49-58
    • /
    • 2010
  • This paper presents experimental results of a series of 1-g shaking table model tests performed on end-bearing single piles and pile groups to investigate the effect of particle size on the dynamic behavior of soil-pile systems. Two soil-pile models were tested twice: first using Jumoonjin sand, and second using Australian Fine sand. In the case of single-pile models, the lateral displacement was almost within 1% of pile diameter which corresponds to the elastic range of the pile. The back-calculated p-y curves show that the subgrade reaction of the Jumoonjin-sand-model ground was larger than that of the Australian Fine-sand-model ground at the same displacement. This phenomenon means that the stress-strain behavior of Jumoonjin sand was initially stiffer than that of Australian Fine sand. This difference was also confirmed by resonant column tests and compression triaxial tests. And the single pile p-y backbone curves of the Australian fine sand were constructed and compared with those of the Jumoonjin sand. As a result, the stiffness of the p-y backbone curves of Jumunjin sand was larger than those of Australian fine sand. Therefore, using the same p-y curves regardless of particle size can lead to inaccurate results when evaluating dynamic behavior of soil-pile system. In the case of the group-pile models, the lateral displacement was much larger than the elastic range of pile movement at the same test conditions in the single-pile models. The back-calculated p-y curves in the case of group pile models were very similar in both sands because the stiffness difference between the Jumoonjin-sand-model ground and the Australian Fine-sand-model ground was not significantly large at a large strain level, where both sands showed non-linear behavior. According to a series of single pile and group pile test results, the evaluation group pile effect using the p-multiplier can lead to inaccurate results on dynamic behavior of soil-pile system.

Conservativeness of Response Displacement Method used in Seismic Response Analysis of Power Cable Tunnels (전력구의 지진응답해석법에 사용되는 응답변위법의 보수성 평가)

  • Lim, Jae-Sung;Yang, Dae-Seung;Hwang, Kyeong-Min;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.243-254
    • /
    • 2021
  • In this study, the conservatism of the response displacement method (RDM) for the seismic response analysis of box-shaped power cable tunnels was evaluated. A total of 50 examples were used considering the cross-sections of 25 power cable tunnels and two soil conditions for each power cable tunnel. The following three methods were applied for the analysis by the RDM: (1) single cosine method, (2) double cosine method, and (3) dynamic free-field analysis method. A refined dynamic analysis method considering soil-structure interaction (SSI) was employed to compare the conservatism of the RDM. The double cosine method demonstrated the most conservative result, while the dynamic free-field analysis method yielded the least deviation. The soil stiffness reduction factor, C, for the double cosine method was recommended to be 0.9 and 0.7 for the operational performance and collapse prevention levels, respectively, to ensure a probability of at least 80% that the member force by the RDM is larger than that of dynamic SSI analysis.

Physical and Mechanical Characteristics of Subgrade Soil using Nondestructive and Penetration Tests (비파괴시험과 관입시험에 의한 노상토의 물리·역학적 특성)

  • Kim, Kyu-Sun;Kim, Dong-Hee;Fratta, Dante;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.19-27
    • /
    • 2011
  • This paper evaluates the applicability of wave-based nondestructive methodologies and a penetration test for compaction quality measurements during road construction. To evaluate the physical and mechanical properties of compacted subgrade soil layers, soil stiffness gauge (SSG), time domain reflectometry (TDR), and miniature electro-mechanical systems (MEMS) accelerometers were used to nondestructively evaluate the soil response during and after compaction and dynamic cone penetrometer (DCP) profiles were used to evaluate the soil shear strength after compaction was completed. At the field site, two types of soils were compacted with four different compaction equipments and energies. Field testing results indicate that soil parameters evaluated by different testing methods, which are SSG, TDR, MEMS accelerometer, and DCP, are highly correlated. In addition, it is shown that the physical and mechanical tests deployed in this study can be used as alternative methods to the conventional compaction quality evaluation methods when assessing the overall quality and the engineering response of compacted lifts.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

Structural Analysis of Deepwater Steel Catenary Riser using OrcaFlex (OrcaFlex를 이용한 심해 SCR 구조 해석)

  • Park, Kyu-Sik;Choi, Han-Suk;Kim, Do-Kyun;Yu, Su-Young;Kang, Soo-Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.16-27
    • /
    • 2015
  • The design challenges when attempting to obtain sufficient strength for a deepwater steel catenary riser (SCR) include high stress near the hang-off location, an elevated beam-column buckling load due to the effective compression in the touchdown zone (TDZ), and increased stress and low-cycle fatigue damage in the TDZ. Therefore, a systematic strength analysis is required for the proper design of an SCR. However, deepwater SCR analysis is a new research area. Thus, the objective of this study was to develop an overall analysis procedure for a deepwater SCR. The structural behavior of a deepwater SCR under various environmental loading conditions was investigated, and a sensitivity analysis was conducted with respect to various parameters such as the SCR weight, weight of the internal contents, hang-off angle (HOA), and vertical soil stiffness. Based on a deepwater SCR design example, it was found that the maximum stress of an SCR occurred at a hang-off location under parallel loading direction with respect to the riser plane, except for a wave dominant dynamic survival loading condition. Furthermore, the tensile stress governed the total stress of the SCRs, whereas the bending stress governed the total stress at the TDZ. The weight of the SCR and internal contents affected the maximum stress of the SCR more than the HOA and vertical soil stiffness, because the weight of the SCR, including the internal contents, was directly related to its tensile stress.

Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (I) (단부 경계조건을 고려한 매설관의 동적응답 해석 (I))

  • Jeong, Jin-Ho;Lee, Byong-Gil;Park, Byung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1148-1158
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends. We have studied the seismic responses of the buried pipelines with the various boundary end conditions both along the axial and the transverse direction. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic waves as a ground displacement in the form of a sinusoidal wave. The natural frequency and its mode, and the effect of parameters have been interpreted in terms of free vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration, which increases with increasing soil stiffness and decreases with increasing length of the buried pipeline. Such a behavior appears most prominently along the axial rather than the transverse direction of the buried pipelines. The resulting frequencies and the mode shapes obtained from the free vibration for the various boundary end conditions of the pipelines have been utilized to derive the mathematical formulae for the displacements and the strains along the axial direction, and the displacements and the bending strains along the transverse direction in case of the forced vibration. The negligibly small difference of 6.2% between our result and that of Ogawa et. al. (2001) for the axial strain with a one second period confirms the accuracy of our approach in this study.

  • PDF

A Study on the Dynamic Behavior of a Various Buried Pipeline (각종 매설관의 동적거동에 관한 연구)

  • Jeong, Jin-Ho;Lim, Chang-Kyu;Joeng, Du-Hwoe;Kook, Seung-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.15-24
    • /
    • 2006
  • This work reports the results of our study on the dynamic response of various buried pipelines depending on their boundary conditions. We have studied behavior of the buried pipelines both along the axial and the transverse direction. The buried pipelines are modeled as beams on elastic foundation while the seismic wave as a ground displacement in the form of a sinusoidal wave. The natural frequency, its mode, and the effect of parameters have been interpreted in terms of free vibration. In order to investigate the response on the ground wave, the resulting frequency and the mode shape obtained from the free vibration have been utilized to derive the mathematical formula for the forced vibration. The natural frequency varies most significantly by the soil stiffness and the length of the buried pipelines in the case of free vibration. The effects of the propagation direction and velocity and the frequency of ground wave on the dynamic responses of concrete, steel, and FRP pipes have been analyzed and then dynamic responses depending on the type of pipes have been compared. Through performing dynamic analyser for various boundary conditions and estimation of the location of maximum strain has been estimated for the type of pipes and boundary conditions.