• Title/Summary/Keyword: Dynamic Softening

Search Result 111, Processing Time 0.028 seconds

Effectiveness of design procedures for linear TMD installed on inelastic structures under pulse-like ground motion

  • Quaranta, Giuseppe;Mollaioli, Fabrizio;Monti, Giorgio
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.239-260
    • /
    • 2016
  • Tuned mass dampers (TMDs) have been frequently proposed to mitigate the detrimental effects of dynamic loadings in structural systems. The effectiveness of this protection strategy has been demonstrated for wind-induced vibrations and, to some extent, for seismic loadings. Within this framework, recent numerical studies have shown that beneficial effects can be achieved by placing a linear TMD on the roof of linear elastic structural systems subjected to pulse-like ground motions. Motivated by these positive outcomes, closed-form design formulations have been also proposed to optimize the device's parameters. For structural systems that undergo a near-fault pulse-like ground motion, however, it is unlikely that their dynamic response be linear elastic. Hence, it is very important to understand whether such strategy is effective for inelastic structural systems. In order to provide new useful insights about this issue, the paper presents statistical results obtained from a numerical study conducted for three shear-type hysteretic (softening-type) systems having 4, 8 and 16 stories equipped with a linear elastic TMD. The effectiveness of two design procedures is discussed by examining the performances of the protected systems subjected to 124 natural pulse-like earthquakes.

Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon

  • Bonopera, Marco;Chang, Kuo-Chun;Lin, Tzu-Kang;Tullini, Nerio
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The influence of prestress force on the fundamental frequency and static deflection shape of uncracked Prestressed Concrete (PC) beams with a parabolic bonded tendon was examined in this paper. Due to the conflicts among existing theories, the analytical solutions for properly considering the dynamic and static behavior of these members is not straightforward. A series of experiments were conducted for a total period of approximately 2.5 months on a PC beam made with high strength concrete, subsequently and closely to the 28 days of age of concrete. Specifically, the simply supported PC member was short term subjected to free transverse vibration and three-point bending tests during its early-age. Subsequently, the experimental data were compared with a model that describes the dynamic behavior of PC girders as a combination of two substructures interconnected, i.e., a compressed Euler-Bernoulli beam and a tensioned parabolic cable. It was established that the fundamental frequency of uncracked PC beams with a parabolic bonded tendon is sensitive to the variation of the initial elastic modulus of concrete in the early-age curing. Furthermore, the small variation in experimental frequency with time makes doubtful its use in inverse problem identifications. Conversely, the relationship between prestress force and static deflection shape is well described by the magnification factor formula of the "compression-softening" theory by assuming the variation of the chord elastic modulus of concrete with time.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Numerical Investigation of Dynamic Responses of a Thermal Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 데토네이션 하중에 의한 열탄소성 관의 동적 거동 해석)

  • Gwak, Min-cheol;Lee, Younghun;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.60-69
    • /
    • 2016
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with Chapman-Jouguet (C-J) condition and experimental cell size. To conform the elasto-plastic model, plastic and elastic behaviors are verified by Taylor impact and plate bending motion, respectively. The numerical results are compared with the theory on burst pressure of tube. The critical deformable thickness with the thermal softening considered is good agreement with the theoretical value.

Experimental dynamic performance of an Aluminium-MRE shallow shell

  • Zhang, Jiawei;Yildirim, Tanju;Neupane, Guru Prakash;Tao, Yuechuan;Bingnong, Jiang;Li, Weihua
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2020
  • The nonlinear dynamics of a directly forced clamped-clamped-free-free magneto-rheological elastomer (MRE) sandwich shell has been experimentally investigated. Experiments have been conducted on an aluminium shallow shell (shell A) and an MRE-aluminium sandwich shallow shell with single curvature (shell B). An electrodynamic shaker has been used to directly force shells A and B in the vicinity of their fundamental resonance frequency; a laser displacement sensor has been used to measure the vibration amplitude to construct the frequency-response curves. It was observed that for an aluminium shell (shell A), that at small forcing amplitudes, a weak softening-type nonlinear behaviour was observed, however, at higher forcing amplitudes the nonlinear dynamical behaviour shifted and a strong hardening-type response occurred. For the MRE shell (shell B), the effect of forcing amplitude showed softening at low magnetic fields and hardening for medium magnetic fields; it was also observed the mono-curved MRE sandwich shell changed dynamics to quasiperiodic displacement at some frequencies, from a periodic displacement. The presence of a magnetic field, initial curvature, and forcing amplitude has significant qualitative and quantitative effects on the nonlinear dynamical response of a mono curved MRE sandwich shell.

A Study on Rheological Behavior of Korean Straight Asphalts (국내 스트레이트 아스팔트의 거동 특성 연구)

  • Kim, Nam-Ho;Hwang, Sung-Do;Park, Young-Cheol
    • International Journal of Highway Engineering
    • /
    • v.1 no.2
    • /
    • pp.121-133
    • /
    • 1999
  • This study was based on the evaluation of 9 asphalts that were produced in five major Korean refineries. The study was concentrated to identify the problems of the current asphalt specification (KS M 2201) and to determine the ranges of visco-elastic asphalt behavior. As a conventional asphalt property. asphalt penetration, ring and ball(R&B) softening point, asphalt viscosity, and flash point of asphalt were measured. Also Dynamic Shear Rheometer (DSR) were used to evaluate visco-elastic properties of asphalts in the $-20^{\circ}C$ through $30^{\circ}C$ temperature range. These properties before and after the short-term (RTFO) and long-term (PAV) aging were compared and analyzed to achieve the research objectives. The conclusion from this study can be summarized by the followings. The low temperature rheological behavior of all the straight asphalt from five major Korean refineries is similar regardless of asphalt grade. In the mean while, the rheological behavior at high and intermediate temperature of Korean straight asphalt varies depending on asphalt grade.

  • PDF

Seismic fragility evaluation of arch concrete dams through nonlinear incremental analysis using smeared crack model

  • Moradloo, Javad;Naserasadi, Kiarash;Zamani, Habib
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.747-760
    • /
    • 2018
  • In the present study, a methodology for developing fragilities of arch concrete dams to assess their performance against seismic hazards is introduced. Firstly, the probability risk and fragility curves are presented, followed by implementation and representation of the way this method is used. Amirkabir arch concrete dam was subjected to non-linear dynamic analyses. A modified three dimensional rotating smeared crack model was used to take the nonlinear behavior of mass concrete into account. The proposed model considers major characteristics of mass concrete. These characteristics are pre-softening behavior, softening initiation criteria, fracture energy conservation, suitable damping mechanism and strain rate effect. In the present analysis, complete fluid-structure interaction is included to account for appropriate fluid compressibility and absorptive reservoir boundary conditions. In this study, the Amirkabir arch concrete dam is subjected to a set of 8 three-component earthquakes each scaled to 10 increasing intensity levels. Using proposed nonlinear smeared crack model, nonlinear analysis is performed where the structure is subjected to a large set of scaled and un-scaled ground motions and the maximum responses are extracted for each one and plotted. Based on the results, fragility curves were plotted according to various and possible damages indexes. Discrete damage probabilities were calculated using statistical methods for each considered performance level and incremental nonlinear analysis. Then, fragility curves were constructed based on the lognormal distribution assumption. Two damage indexes were introduced and compared to one another. The results indicate that the dam has a proper stability under earthquake conditions at MCE level. Moreover, displacement damages index is more conservative and impractical in the fragility analysis than tensional damage index.

Finite element analysis of shear-critical reinforced concrete walls

  • Kazaz, Ilker
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.143-162
    • /
    • 2011
  • Advanced material models for concrete are not widely available in general purpose finite element codes. Parameters to define them complicate the implementation because they are case sensitive. In addition to this, their validity under severe shear condition has not been verified. In this article, simple engineering plasticity material models available in a commercial finite element code are used to demonstrate that complicated shear behavior can be calculated with reasonable accuracy. For this purpose dynamic response of a squat shear wall that had been tested on a shaking table as part of an experimental program conducted in Japan is analyzed. Both the finite element and material aspects of the modeling are examined. A corrective artifice for general engineering plasticity models to account for shear effects in concrete is developed. The results of modifications in modeling the concrete in compression are evaluated and compared with experimental response quantities.

Seismic analysis of arch dams including dam-reservoir interaction via a continuum damage model

  • Karaton, M.;Calayir, Y.;Bayraktar, A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.351-370
    • /
    • 2006
  • In this study, the earthquake damage response of the concrete arch dams was investigated including dam-reservoir interaction. A continuum damage model which is a second-order tensor and includes the strain softening behavior was selected for the concrete material. Fluid-structure interaction problem was modeled by Lagrangian approach. Sommerfeld radiation condition was applied to the truncated boundary of reservoir. The improved form of the HHT-${\alpha}$ time integration algorithm was used in the solution of the equations of motion. The arch dam Type 5 was selected for numerical application. For the dynamic input, acceleration records of the 10 December 1967 Koyna earthquake were chosen. These records were scaled with earthquake acceleration scale factor (EASF) and then used in the analyses. Solutions were obtained for empty and full reservoir cases. The effects of EASF and damping ratio on the response of the dam were studied.

A Study on Dynamic and Static Recrystallization Behaviors and Microstructure Evolution Prediction of a Die Steel (금형강의 동적 및 정적 재결정 거동과 미세조직 변화 예측에 관한 연구)

  • 정호승;조종래;차도진;배원병
    • Transactions of Materials Processing
    • /
    • v.10 no.4
    • /
    • pp.338-346
    • /
    • 2001
  • Evaluation of microstructural changes is important for process control during open die forging of heavy ingots. The control of forging parameters, such as shape of the dies, reduction, temperature and sequence of passes, is to maximize the forging effects and to minimize inhomogeneities of mechanical properties. The hot working die steel is produced by using the multistage open die forging. The structure is altered during forging by subsequent Precesses of plastic deformation, recrystallization and grain growth. A numerical analysis using an rigid visco-plastic finite element model was performed to predict microstructural evolution of hot working die steel.

  • PDF