• 제목/요약/키워드: Dynamic Simulation Model

검색결과 2,968건 처리시간 0.039초

유압식 밸브 간극 조정장치를 가진 중심지지 로커암형 OHC 밸브기구의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Center Pivot Rocker Arm Type OHC Valve Trains with Hydraulic Lash Adjuster)

  • 김도중;신병현
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.97-108
    • /
    • 1996
  • A modeling technique is proposed for dynamic simulations of OHC valve trains with HLA(hydraulic lash adiuster). HLA is expressed by an air-oil mixture model considering HLA leak-down and aeraton effects. A compact nonlinear equation is derived which describe the short term dynamic behavior of the HLA. Valve spring is analyzed by a distributed parameter model including nonlinear characteristics in the spring surge phenomena. Global behavior of the remaining valve train is expressed by a lumped mass model. The experiental results prove that the simulation model developed here is accurate and useful for the dynamic simulations of OHC valve trains with HLA.

  • PDF

동력학기반 인체 모델 연구 (A Study of Human Model Based on Dynamics)

  • 김창희;김승호;오병주
    • 대한의용생체공학회:의공학회지
    • /
    • 제20권4호
    • /
    • pp.485-493
    • /
    • 1999
  • Human can generate various posture and motion with nearly 350 muscle pairs. From the viewpoint of mechanisms, the human skeleton mechanism represents great kinematic and dynamical complexity. Physical and behavioral fidelity of human motion requires dynamically accurate modeling and controling. This paper describes a mathematical modeling, and dynamic simulation of human body. The human dynamic model is simplified as a rigid body consisting of 18 actuated degrees of freedom for the real time computation. Complex kinematic chain of human body is partitioned as 6 serial kinematic chains that is, left arm, right arm, support leg, free leg, body, and head. Modeling is developed based on Newton-Euler formulation. The validity of proposed dynamic model, which represents mathematically high order differential equation, is verified through the dynamic simulation.

  • PDF

6$\times$6 이동로봇의 경로추종을 위한 동역학 시뮬레이션 (Full Dynamic Model in the Loop Simulation for Path Tracking Control of a 6$\times$6 Mobile Robot)

  • 허진욱
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.141-148
    • /
    • 2008
  • In this paper, we develop a detailed full dynamic model which includes various rough terrains for 6-wheel skid-steering mobile robot based on the real experimental autonomous vehicle called Dog-Horse Robot. We also design a co-simulation for performance comparison of path tracking algorithms. The control architecture in the co-simulation can be divided into two levels. The high level control is the closed-loop control of path tracking to follow a given path, and the low level is concerned about torque control of wheel motion. The simulation using the mechanical data of the Dog-Horse Robot is performed under the Matlab/Simulink environment. We also simulate and evaluate the performance of the model based adaptive controller.

동적인 프로세서 모델 선택에 의한 효율적인 코시뮬레이션 방법 (Efficient Co-simulation Method with Dynamic Selection of Processor Mode1)

  • 고현우;배종열;정정화
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.396-399
    • /
    • 1999
  • In this paper, the efficient HW/SW co-simulation method which selects the ISA model dynamically is proposed. Because the ISA models with only fixed accuracy have been used in previous co-simulation environment, it may result in bad performance in speed or accuracy. In the proposed method, the cycle accurate ISA model is used in the case that the states of the detailed system are to be inspected. In other case, instruction-based model is executed in order to accelerate the simulation speed. The proposed dynamic model selection can be done by setting the conversion point in the application code before the simulation starts. The experiment on the embedded RISC processor have been performed, and its result shows that the proposed method is more efficient than the case of using fixed ISA model.

  • PDF

컴퓨터 시뮬레이션과 실규모 하드웨어시뮬레이터를 이용한 계통연계 풍력발전의 응동특성 분석 (Dynamic Interaction Analysis of Interconnected Wind Power Generator using Computer Simulation and Real-Size Hardware Simulator)

  • 윤동진;한병문;최영도;전영수;정병창;정용호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1047_1048
    • /
    • 2009
  • This paper describes comparative analysis results about the dynamic interaction of interconnected wind power system using the actual-size hardware simulator and the simulation model with PSCAD/EMTDC. The hardware simulator, which is composed of 2.0MVA induction motor with drive system and 1.5MW doubly-fed induction generator, was built and tested in Go-Chang Test Site of KEPCO for analyzing the dynamic interaction with the interconnected distribution system. The operation of hardware simulator was verified through comparative analysis between experimental results and simulation results obtained by simulation model with PSCAD/EMTDC. The developed hardware simulator and simulation model could be effectively used for analyzing the dynamic interaction, which has various phenomena depending on the wind variation and the network state of interconnected power system.

  • PDF

용융탄산염연료전지 및 주변기기의 동적시뮬레이션 (Dynamic Simulation of Molten Carbonate Fuel Cell and Mechanical Balance of Plant)

  • 성태홍;김경천
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.121-128
    • /
    • 2014
  • 본 연구의 목적은 용융탄산염연료전지와 같은 고온연료전지에 동반하는 기계적 주변기기의 타당성을 검토할 수 있는 동적 시뮬레이션 모델을 개발하는 것이다. 연료전지를 운송수단과 같은 독립적인 동력기관에서 사용하기 위해서는 동반하는 기계적 주변기기를 최적화 및 소형화할 필요가 있다. 본 연구에서는 유입가스의 조성, 압력, 유량 및 스택의 온도에 따른 용융탄산염연료전지 내부의 화학반응의 동적 모델링을 구현하고 정상상태 시뮬레이션을 수행하여 실험결과와 비교 분석하였다. 또 연료전지의 전류밀도 제어에 따른 on/off 시뮬레이션을 수행하여 동적 시뮬레이션 모델의 타당성을 분석하였다.

공작기계 시스템의 모델링과 동적 특성 분석 (Modelling and dynamic analysis of electro-mechanical system in machine tools)

  • 박용환;신흥철;문희성;최종률
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.991-994
    • /
    • 1995
  • Recent trend in machine tools is pursuing the high precision and high speed facility and its architecture is being more complicated. With this tendency, it is required the more precise dynamic analysis of electro-mechanical system in machine tools. In this paper, the exact mathematical model of feed and spindle system of a typical machine tools was induced. The feed system is modeled as 7-mass system including the workpiece and the spindle system as 4-mass system. The simulation results show that the induced model depicts the characteristics of real system very well. The effects of each mechanical element to dynamic motion of a machine are analyzed by simulation with the induced model. It ia anticipated that the induced model can be used in the analysis of various machine architectures and in the design stage of new machine tools.

  • PDF

직접구동 평면 다관절 로봇의 동역학적 모델에 따른 피드포워드 제어의 실험적 평가 (Experimental Evaluation of Feedforward Control Based on the Dynamic Models of A Direct Drive SCARA Robot)

  • 홍윤식;강봉수;김수현;박기환;곽윤근
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.146-153
    • /
    • 1996
  • A SCARA type direct drive robot which can be used in the assembly operation was designed and manufactured. Graphite fiber epoxy composite material was used in the fabrication of the robot arm structure in order to improve the speed of the robot arm with a high damping effect. For model-based control and sensitivity analysis of system parameters, the dynamic model of robot arm and drive servo amplifier parameters such as equivalent gains of PWM driver and velocity gains of servo system were estimated from frequency response tests. The complete dynamic model for overall robot system was used in the simulation of the open-loop control. The simulation results agreed reasonably well to the experimental results. The feedforward control using the dynamic models improved the trajectory tracking performance, decreasing the tracking error by factor of three compared with PID control. This study found that the inverse dynamic model of the robot arm including the drive servo system showed better performances than the case of arm dynamic model only.

두께 진동모드를 이용한 고주파 세라믹 Resonator의 ANSYS Simulation (ANSYS Simulation of VHF Ceramic Resonator Using Thickness-longitudinal vibration mode)

  • 홍재일;윤현상;민석규;윤광희;류주현;김종선;박창엽
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.259-262
    • /
    • 2000
  • In this study, 3.1$\times$3.7$\times$0.365 $\textrm{mm}^2$ model of thickness-longitudinal vibration mode VHF ceramic resonator with (Pb,Ca)(Co,W,Ti)O$_3$ ceramics was simulated by ANSYS according to the electrode size. With the variations of electrode size of the model, fundamental and the third overtone dynamic ratio was investigated. At the ratio of electrode to model thickness(1/t) 2.5, third overtone dynamic ratio was largely increased. That model is suitable for 20 MHz resonator.

  • PDF

Comparison and Dynamic Behavior of Moving-Coil Linear Oscillatory Actuator with/without Mechanical Spring driven by Rectangular Voltage Source

  • Choi, Jang-Young;Kang, Han-Bit
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.394-397
    • /
    • 2014
  • This paper deals with the comparison and dynamic behavior of a moving-coil linear oscillatory actuator (MCLOA) with/without a mechanical spring. On the basis of a dynamic simulation model, the dynamic characteristics such as a current and a stroke of the MCLOA without the spring are predicted for various values of frequency. And then, dynamic test results are given to confirm the dynamic simulations. Finally, this paper describes the influence of the spring on the dynamic behavior of the MCLOA from the dynamic experiments of the MCLOA with/without the spring.