• Title/Summary/Keyword: Dynamic Simulation Model

Search Result 2,973, Processing Time 0.03 seconds

Dynamic Modeling and Simulation of a Hydro-forming Process (하이드로 포밍 공정의 동특성 해석 및 시뮬레이션)

  • Lee, Woo-Ho;Cho, Hyung-Suck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.122-132
    • /
    • 1999
  • This study describes a dynamic model of the hydroforming process which is used for precision forming of sheet metals. To help the controller design for the control of the forming pressure needed for this process as well as to investigate the effect of system parameters on the dynamic behavior, dynamic modeling is performed with emphasis on hydraulic servo system which actuates the forming machine. Since the model contains several unknown parameters, these were estimated via a least square parameter identification method. Based upon the identified model, a series of simulations were performed for various operating conditions. The results were compared with those of the experiments to verify the validity of the proposed model. The comparison study shows that the proposed dynamic model can describe dynamic behavior of the forming pressure of the hydroforming process to desirable accuracy.

  • PDF

A Study on Simulation of Dynamic Characteristics in Prototype Microgrid (Prototype Microgrid의 동특성 모의에 관한 연구)

  • Choi, Eun-Sik;Choi, Heung-Kwan;Jeon, Jin-Hong;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2157-2164
    • /
    • 2010
  • Microgrid is generally defined as cluster of small distributed generators, energy storages and loads. Through monitoring and coordinated control, microgrid can provide various benefits such as reduction of energy cost, peak shaving and power quality improvement. In design stage of microgrid, system dynamic simulation is necessary for optimizing of sizing and siting of DER(distributed energy resources). As number of the system components increases, simulation time will be longer. This problem can restrict optimal design. So we used simplified modeling on energy sources and average switching model on power converters to reduce simulation time. The effectiveness of this method is verified by applying to prototype microgrid system, which is consist of photovoltaic, wind power, diesel engine generators, battery energy storage system and loads installed in laboratory. Simulation by Matlab/Simulink and measurements on prototype microgrid show that the proposed method can reduce simulation time not sacrificing dynamic characteristics.

Experimental study of dynamic interaction between group of intake towers and water

  • Wang, Haibo;Li, Deyu;Tang, Bihua
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.163-179
    • /
    • 2014
  • Dynamic test with scaled model of a group of intake towers was performed to study the dynamic interaction between water and towers. The test model consists of intake tower or towers, massless foundation near the towers and part of water to simulate the dynamic interaction of tower-water-foundation system. Models with a single tower and 4 towers were tested to find the different influences of the water on the tower dynamic properties, seismic responses as well as dynamic water-tower interaction. It is found that the water has little influence on the resonant frequency in the direction perpendicular to flow due to the normal force transfer role of the water in the contraction joints between towers. By the same effect of the water, maximum accelerations in the same direction on 4 towers tend to close to each other as the water level increased from low to normal level. Moreover, the acceleration responses of the single tower model are larger than the group of towers model in both directions in general. Within 30m from the surface of water, hydrodynamic pressures were quite close for a single tower and group of towers model at two water levels. For points deeper than 30m, the pressures increased about 40 to 55% for the group of towers model than the single tower model at both water levels. In respect to the pressures at different towers, two mid towers experienced higher than two side towers, the deeper, the larger the difference. And the inside hydrodynamic pressures are more dependent on ground motions than the outside.

Dynamic Verification Methodology of User Code in AddSIM Environment (AddSIM 환경에서의 사용자 코드 동적 검증 방법론)

  • Yang, Jiyong;Choi, Changbeom
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.41-47
    • /
    • 2019
  • Defense simulation is actively used to test various weapon systems and evaluate their effectiveness. The AddSIM environment is a simulation framework designed to support the weapon systems dealt with in defense simulation from an integrated point of view and is designed for reuse and scalability. Models used in AddSIM require base model structure fidelity and verification of user code area. Therefore, this paper describes the dynamic verification method used for completeness of models used in AddSIM. For the dynamic verification of user code, the specification method and the verification algorithm are described. Also, we introduce the prototype of the dynamic verifier implemented based on verification specification method and algorithm. The case study analyzes the verification results based on the simulation example implemented in AddSIM environment.

A Dynamic Simulation of the Slider in HDD (하드디스크 슬라이더의 동적수치해석)

  • 김도완;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.4
    • /
    • pp.295-301
    • /
    • 2000
  • The dynamic simulation of slider in hard disk drive is performed using Factored Implicit Finite Difference method. The modified Reynolds equation with Fukui and Kaneko model is employed as a governing equation. Equations of motion for the slider of three degrees of freedom are solved simultaneously with the modified Reynolds equation. The transient responses of the slider for disk step bumps and slider impulse forces are shown for various cases and are compared for the iteration algorithm and new algorithm.

Fundamental study on Inverter-type Series and Shunt Compensator for Transmission System (송전계통의 인버터식 직.병렬 보상기에 관한 기초연구)

  • Han, Byung-Moon;Han, Hoo-Sek
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.425-433
    • /
    • 1999
  • This paper describes a simulation model and a scaled hardware model to analyze the dynamic performance of Unified Power Flow Controller, which can flexibly adjust the active and reactive power flow through the ac transmission line. The design of control system was developed using vector control method. The results of simulation and scaled hardware test show that the developed control system works accurately. And both models are very effective to analyze the dynamic performance of the Unified Power Flow Controller.

  • PDF

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

The simulation-based methods for the dynamic manufacturing environments in the assembly systems (조립 생산체계의 동적인 상황을 위한 시뮬레이션 적용 기법)

  • Kim, Day-Sung;Jeong, Peom-Jin;Park, Peom;Kim, Won-Joong;Kim, Man-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.56-60
    • /
    • 1996
  • In most dynamic manufacturing environments today, systems and processes are constantly changing. Simulation tools are required that can accurately model the system in detail, but still be easy to use, and allow rapid model redevelopment to react quickly for system changes. An object-oriented simulation modeling environment is presented to provide flexible modeling capabilities for simulation. Also, when simulating an assembly system, a large number of factors must be considered. Because of such complexities, simulation has been used as the primary method in designing, planning and analyzing. In this paper, the dynamic manufacturing environment is discussed for the assembly system. Also, an application method of simulation tools is presented with the experimental data from the automobile manufacturing shop to improve the productivity effectively.

  • PDF