• 제목/요약/키워드: Dynamic SET-UP

검색결과 348건 처리시간 0.024초

Acoustic Noise Reduction and Power Factor Correction in Switched Reluctance Motor Drives

  • Rashidi, Amir;Saghaiannejad, Sayed Mortaza;Mousavi, Sayed Javad
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, a four-phase 8/6-pole 4-kW SR motor drive model is presented. Based on experimental data, the model allows an accurate simulation of a drive in dynamic operation. Simulations are performed and a laboratory type set-up is built based on a TI TMS320F2812 platform to experimentally verify the theoretical results obtained for a SR motor. To reduce acoustic noise and to correct the power factor of this drive, a two-stage power converter is proposed that uses a current source rectifier (CSR) as the input stage for the asymmetrical converter of the studied SRM. Employing the space-vector modulation (SVM) method in matrix converters, the CSR switching allows the dc link's capacitors to be eliminated and the power factor of the SRM drive to be improved. As the electrical motive force (emf) is directly proportional to the rotor speed, the input voltage to the machine can be programmed to be a function of the speed with the modulation index of the CSR, leading to a reduction in the acoustic noise of the SRM drive. Simulation of the whole SRM drive system is performed using MATLAB-Simulink. The results fully comply with the required conditions such as power factor correction with an improvement in the THD.

압전 작동기를 이용한 유체 유기 진동의 능동 제어 (Active Control of Flow-Induced Vibration Using Piezoelectric Actuators)

  • 한재홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

Secondary System Initialization Protocol Using FFT-based Correlation Matching for Cognitive Radio Ad-hoc Networks

  • Yoo, Sang-Jo;Jang, Ju-Tae;Seo, Myunghwan;Cho, Hyung-Weon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.123-145
    • /
    • 2017
  • Due to the increasing demand for spectrum resources, cognitive radio networks and dynamic spectrum access draw a lot of research into efficiently utilizing limited spectrum resources. To set up cluster-based CR ad-hoc common channels, conventional methods require a relatively long time to successfully exchange the initialization messages. In this paper, we propose a fast and reliable common channel initialization protocol for CR ad-hoc networks. In the proposed method, the cluster head sequentially broadcasts a system activation signal through its available channels with a predetermined correlation pattern. To detect the cluster head's broadcasting channels and to join the cluster, each member node implements fast Fourier transform (FFT) and computes autocorrelation of an FFT bin sequence for each available channel of the member node. This is compared to the predetermined reference pattern. The join request and channel decision procedures are also presented in this paper. In a simulation study, the performance of the proposed method is evaluated.

차량 원더링 계측을 위한 사선센서 적정 설치각도 결정 (Determining the Appropriate Installation Angle of Skewed Sensor to Measure Vehicle Wandering)

  • 오주삼;장경찬;김민성;장진환
    • 한국도로학회논문집
    • /
    • 제10권3호
    • /
    • pp.79-86
    • /
    • 2008
  • 차량의 동적하중이 도로상에 작용하는 위치를 계측하기 위한 원더링 계측용 사선센서의 적정 설치각도를 제안하였다. 이를 위해서 테이프스위치 센서를 이용하여 원더링 계측용 장비를 개발하였고, 개발된 장비와 실험차량을 이용하여 평가용 자료를 수집하였다. 수집자료 분석 결과, 사선센서의 설치각도가 커질수록 원더링 수집자료의 오차가 감소하였고, 이러한 오차의 감소는 통계적으로도 의미가 있는 것으로 분석되었다. 그러나 사선센서를 $30^{\circ}$ 이상으로 설치할 경우, 탠덤축의 제원상의 이유로 인해 오류자료가 수집되는 것을 확인할 수 있었다. 따라서 본 연구에서는 국내 차량제원 등을 종합하여 원더링 계측용 사선센서의 적정 설치각도를 $20^{\circ}{\sim}25^{\circ}$로 제안하였다.

  • PDF

차량 내 네트워크 선정에 따른 ESC 성능 분석을 위한 ECU-In-the-Loop 시뮬레이션 (ECU-In-the-Loop Simulation for ESC Performance Analysis on the Selection of In-vehicle Networks)

  • 양승문;김성엽;기영훈;안현식
    • 한국자동차공학회논문집
    • /
    • 제21권5호
    • /
    • pp.87-96
    • /
    • 2013
  • This paper shows how the performance of an ESC(Electronic Stability Control) system can be affected by the selection of in-vehicle network protocols such as CAN or FlexRay. The vehicle control performance under ESC operation is analyzed by EILS(ECU-In-the-Loop Simulation). The experimental set-up for the EILS of the ESC system consists of two 32-bit microcontroller boards communicated with CAN or FlexRay protocols. A 7-DOF vehicle model and an ESC algorithm with 2-DOF reference vehicle model are implemented on each microcontroller respectively. It is shown by experimental results that the ESC system using the FlexRay protocol can achieve better performance than that using the CAN protocol for a fast and accurate lane changing.

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • 제7권2호
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.

재료의 물성 표현에 영향을 주는 요인 연구 (A study on the effect factor of architectural material expression)

  • 김소희
    • 한국실내디자인학회논문집
    • /
    • 제15권6호
    • /
    • pp.60-67
    • /
    • 2006
  • In modem days when architectural materials have grave impacts on overall design expression, materials for architecture, especially finishing materials have become the most essential elements for the design expression, as architectural space and form have been. When it comes to the architectural materials, they can be conceived by visual and tactile sensory system and perceptional system which based on memory and experience. This study confirms how materials bring into effect on architecture in the sense of its design. The main subject of this analysis is expression method of architectural finishing materials. Also, this study finds out the relationship between finishing materials and the images of materials by analyzing the effect factor of architectural material expression with the perspectives of materials, formal and environments and by examining roles of the architectural materials in design. The material factor, in the expression of materiality, is how to make tectonic space and to vary the surface of building as finishing material design. The formal factor is related to set up the new direction in the architectural form and to create the dynamic and informal space. And the social and cultural environment as the effect factor gives new situation and context to architectural material expression. This principle enables us to use architectural materials as one of the important elements which express the whole characteristics of the area.

연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究) (A Study on the Control of the Floor Vibration in a Research Building)

  • 백인희;강호섭;손영규
    • 한국건축시공학회지
    • /
    • 제7권3호
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading

  • Li, Guo-Qiang;Yang, Tao-Chun;Chen, Su-Wen
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.337-350
    • /
    • 2009
  • Finite element simulations are increasingly used in structural analysis and design, especially in cases where complex structural and loading conditions are involved. Due to considerable progresses in computer technology as well as nonlinear finite-element analysis techniques in past years, it has become possible to pursue an accurate analysis of the complex blast-induced structural effects by means of numerical simulations. This paper aims to develop a better understanding of the behavior of steel-concrete composite beams (SCCB) under localized blast loading through a numerical parametric study. A finite element model is set up to simulate the blast-resistant features of SCCB using the transient dynamic analysis software LS-DYNA. It is demonstrated that there are three dominant failure modes for SCCB subjected to localized blast loading. The effect of loading position on the behavior of SCCB is also investigated. Finally, a simplified model is proposed for assessing the overall response of SCCB subjected to localized blast loading.

대학교육에서의 CHANGE 플립러닝(Flipped Learning) 수업모형 개발 -교육방법및교육공학교과를 중심으로- (The Development of CHANGE Flipped Learning Instructional Model in Higher Education - base on the 'educational method and technology')

  • 정주영
    • 수산해양교육연구
    • /
    • 제28권6호
    • /
    • pp.1834-1847
    • /
    • 2016
  • Main objectives of the this study are: to develop a model of "Flipped Leaning" that is designed to enhance self-directed learning, learning motivation and self-control, and to verify its effectiveness-in higher education. The verification process initially concentrated on the feasibility study of the model with a thorough literature review and case analyses; then, its general and practical applicability were tested with a field study. As a result, first, the CHANGE Class Model, specifically designed for effective and efficient "Flipped Learning", was developed. It is thus named for the stages that the learning process takes place in the model-i.e., (1) Check ${\rightarrow}$ (2) Ask ${\rightarrow}$ (3) Notice ${\rightarrow}$ (4) Group presentation ${\rightarrow}$ (5) Evaluation, and it emphasizes the dynamic, questions centered (i.e. back and forth between the students and the instructor as well as between the students) learning process. Second, the Model was instrumental in enhancing self-directed learning, learning motivation and self-control; thus, as a result, it significantly improved the effectiveness, the level of concentration and the attractiveness of the learning process. The value of this study lies in pointing to a clear plan to allow a student in higher learning to set-up a self-directed learning plan, to be able to control it while being continuously motivated to complete it.