• Title/Summary/Keyword: Dynamic Response Signal

Search Result 223, Processing Time 0.028 seconds

Estimation of Displacement Responses from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Kim, Sung-Wan;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.109-117
    • /
    • 2008
  • In this study, a method predicting the displacement responseof structures from the measured dynamic strain signal is proposed by using a mode decomposition technique. Dynamic loadings including wind and seismic loadings could be exerted to the bridge. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. To overcome such a problem, a mode decomposition technique was used in this study. The measured strain signal is decomposed into each modal component by using the empirical mode decomposition(EMD) as one of mode decomposition techniques. Then, the decomposed strain signals on each modal component are transformed into the modal displacement components. And the corresponding mode shapes can be also estimated by using the proper orthogonal decomposition(POD) from the measured strain signal. Thus, total displacement response could be predicted from combining the modal displacement components.

  • PDF

Dynamic Response Improvement of Stand Alone Engine-Generator System using Double Voltage Detection Method (전압 이중 검출법에 의한 독립형 엔진-발전기 시스템 응답특성 개선)

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1195-1199
    • /
    • 2008
  • In this paper, peak detector of generator's output voltage and variable gain controller are introduced for a fast dynamic response. The conventional r,m.s, signal detected has inherent time delay, and the dynamic response of generator using conventional PID controller has some problem in sudden load change. In this paper, the peak detector and signal selector with variable gain controller is used to overcome this problem. The main controller can check the voltage state from the peak detector. When a sudden load change, the over-voltage and under-voltage signal from peak detector change the controller's gain and exciter's current reference. The proposed scheme can improve the dynamic response, which is verified from experimental test of 200kW diesel engine-generator.

Development of automatic measurement system for dynamic respose time of pneumatic solenoid valve (공압밸브의 동적응답 특성측정 자동화 시스템 개발)

  • 강보식;김형의
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.974-978
    • /
    • 1991
  • Electro-pneumatic valve is an electro-mechanical device which converts electric signal into pneumatic flow mu or pressure. A measurement of dynamic response time is very important to evaluate valve performance. Dynamic response time of electro-pneumatic valve has a variation accordance with valve types, operating way and test standard. In this study, automatic measurement system of dynamic response time is composed based on test condition of dynamic response time test standard(CETOP, JIS). Also, in this study test pressure variation characteristics accordance with variation of solenoid excitation power, and we developed dynamic response measurement system enable to compare of and analyze these two characteristics.

  • PDF

Estimation of Displacement Response from the Measured Dynamic Strain Signals Using Mode Decomposition Technique (모드분해기법을 이용한 동적 변형률신호로부터 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.507-515
    • /
    • 2008
  • In this study, a method predicting the displacement response of structures from the measured dynamic strain signal is proposed by using mode decomposition technique. Evaluation of bridge stability is normally focused on the bridge completed. However, dynamic loadings including wind and seismic loadings could be exerted to the bridge under construction. In order to examine the bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. Because it may be not easy for the displacement response to be acquired directly on site, an indirect method to predict the displacement response is needed. Thus, as an alternative for predicting the displacement response indirectly, the conversion of the measured strain signal into the displacement response is suggested, while the measured strain signal can be obtained using fiber optic Bragg-grating (FBG) sensors. As previous studies on the prediction of displacement response by using the FBG sensors, the static displacement has been mainly predicted. For predicting the dynamic displacement, it has been known that the measured strain signal includes higher modes and then the predicted dynamic displacement can be inherently contaminated by broad-band noises. To overcome such problem, a mode decomposition technique was used. Mode decomposition technique estimates the displacement response of each mode with mode shape estimated to use POD from strain signal and with the measured strain signal decomposed into mode by EMD. This is a method estimating the total displacement response combined with the each displacement response about the major mode of the structure. In order to examine the mode decomposition technique suggested in this study model experiment was performed.

Estimation of single-trial event-related potentials using multirate signal processing latency compensation (멀티레이트 신호처리와 동적 래이턴스 보정에 의한 단일 응답 유발전위 뇌파 추출)

  • 이용희;이두수
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.60-69
    • /
    • 1997
  • We present an average method based on the multirate signal processing and dynamic allocation average for the purpose of monitoring event-related potentials(ERP) and continuously and dynamically. In the proposed method, first, latency shifts are detected through the cross correlation between a current response and the reference response. Then, the multirate signal processing which is composed of up-sampler, lowpass filter, and down sampler is performed to compensate the latency shifts of the reference response, therefore we obtain the reference response with a peak latencies compenated by those of a current response. Finally, the single response is obtained by averaging the compensated reference response and a current response. In the simulation, the results of quantitative evaluation by simulation and the results using linical data are presented. From the result, the proposed method reflects dynamic time-varying ERP more exactly than previous methods and is also effective in consecutive monitoring of ERP.

  • PDF

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Correlation Measurement of Process Dynamic Characteristics by Pseudo-Random Binary Singnals (상관관계법에 의한 제어계통의 동 특성연구 ( 1 )-의 불규칙 2진신호에 의한 푸로쎄스의 동특성 상관측정)

  • 한만춘;최경삼;박장춘
    • 전기의세계
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 1970
  • In this paper, to determine process dynamic characteristics, the correlation method for measuring the impulse response of process using a pseudo-random binary signal as the test signal instead of white noise was studied. The error caused by using the signal of Mesquence signal generator which was built up by the authors was analysed. Experments were performed on the 1st and 2nd order lag systems and the results were in good coincidence with theoretical values. It is expected that applying these results, it may be possible to develop a continuous measuring method adaptable to modern control systems.

  • PDF

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.

Holder exponent analysis for discontinuity detection

  • Sohn, Hoon;Robertson, Amy N.;Farrar, Charles R.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.409-428
    • /
    • 2004
  • In this paper, a Holder exponent, a measure of the degree to which a signal is differentiable, is presented to detect the presence of a discontinuity and when the discontinuity occurs in a dynamic signal. This discontinuity detection has potential applications to structural health monitoring because discontinuities are often introduced into dynamic response data as a result of certain types of damage. Wavelet transforms are incorporated with the Holder exponent to capture the time varying nature of discontinuities, and a classification procedure is developed to quantify when changes in the Holder exponent are significant. The proposed Holder exponent analysis is applied to various experimental signals to reveal underlying damage causing events from the signals. Signals being analyzed include acceleration response of a mechanical system with a rattling internal part, acceleration signals of a three-story building model with a loosing bolt, and strain records of an in-situ bridge during construction. The experimental results presented in this paper demonstrate that the Holder exponent can be an effective tool for identifying certain types of events that introduce discontinuities into the measured dynamic response data.

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.