• 제목/요약/키워드: Dynamic Process

검색결과 4,330건 처리시간 0.043초

70-nm 이하 급 초미세 CMOS 공정에서의 누설 전류 및 동적 전류 소비 억제 내장형 SRAM 설계 (Leakage-Suppressed SRAM with Dynamic Power Saving Scheme for Future Sub-70-nm CMOS Technology)

  • 최훈대;최현영;김동명;김대정;민경식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.343-346
    • /
    • 2004
  • This paper proposes a leakage-suppressed SRAM with dynamic power saying scheme for the future leakage-dominant sub-70-nm technology. By dynamically controlling the common source-line voltage ($V_{SL}$) of sleep cells, the sub-threshold leakage through these sleep cells can be reduced to be 1/10-1/100 due to the reverse body-bias effect, dram-induced barrier lowering (DIBL) and negative $V_{GS}$ effects. Moreover, the bit-ling leakage which mar introduce a fault during the read operation can be completely eliminated in this new SRAM. The dynamic $V_{SL}$ control can also reduce the bit-line swing during the write so that the dynamic power in write can be reduced. This new SRAM was fabricated in 0.35-${\mu}m$ CMOS process and more than $30\%$ of dynamic power saying is experimentally verified in the measurement. The leakage suppression scheme is expected to be able to reduce more than $90\%$ of total SRAM power in the future leakage-dominant 70-nm process.

  • PDF

탐구형 소프트웨어를 활용한 고등학교 해석 기하 교육에 관한 사례 연구 (A Study on the Effectiveness of Dynamic Geometry Software in Solving High School Analytic Geometry Problems.)

  • 황우형;차순규
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제41권3호
    • /
    • pp.341-360
    • /
    • 2002
  • The purpose of the study was to investigate the effectiveness of dynamic software in solving high school analytic geometry problems compared with traditional algebraic approach. Three high school students who have revealed high performance in mathematics were involved in this study. It was considered that they mastered the basic concepts of equations of plane figure and curves of secondary degree. The research questions for the study were the followings: 1) In what degree students understand relationship between geometric approach and algebraic approach in solving geometry problems? 2) What are the difficulties students encounter in the process of using the dynamic software? 3) In what degree the constructions of geometric figures help students to understand the mathematical concepts? 4) What are the effects of dynamic software in constructing analytic geometry concepts? 5) In what degree students have developed the images of algebraic concepts? According to the results of the study, it was revealed that mathematical connections between geometric approach and algebraic approach was complementary. And the students revealed more rely on the algebraic expression over geometric figures in the process of solving geometry problems. The conceptual images of algebraic expression were not developed fully, and they blamed it upon the current college entrance examination system.

  • PDF

산업용 접이식 자동문 안내레일에 작용하는 충격하중 완화를 위한 동역학적 해석 (Dynamic Analysis of Impact Force Alleviation of Industrial Folding-type Automatic Door on Guide Rail)

  • 윤성호;박종천
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.16-21
    • /
    • 2011
  • This paper described an analysis of dynamic mechanism for the industrial two-step folding automatic door using commercial software packages. Two modeling types of operating on the guide rail, the sliding one and the rolling, were adopted to investigate effects of impact force when the door ascends the guide rail. The magnitude of impact force was found very peaklike large over an initial duration of the door's moving up. The amount of damping coefficient for alleviating this shock was controlled to such a moderate degree that the operating conditions can be obtained for the purpose of design. Moreover the behavior of both dynamic stress and deformation were observed for acquirement of structural reliabilities of the combined guide rail and rolling mechanism. This research will be a very useful tool in the near future for the dynamic analysis of the multi-step folding automatic door.

상대 가속도를 이용한 기초 가진을 받는 다자유도 기계 시스템의 동적 해석 (Dynamic Analysis for Mechanical Systems with Multi-Degree of Freedom under Base Excitation Using Relative Acceleration)

  • 이태원
    • 한국기계가공학회지
    • /
    • 제19권3호
    • /
    • pp.36-41
    • /
    • 2020
  • Mechanical systems installed in transport devices, such as vehicles, airplanes, and ships, are mostly subject to translational accelerations at the joints during operations. This base acceleration excitation has a large influence on the performance of the system, therefore, its response must be well analyzed. However, the existing methods for dynamic analysis of structures have some limitations in use. This study presents a new numerical method using relative acceleration to solve these limitations. If the governing equation of motion is linear and the mass matrix, the damping matrix, and the stiffness matrix are constant over time in the finite element analysis, the proposed method can be applied to the transient behavior analysis and the harmonic response analysis of the structure. Because it is not necessary to introduce a virtual mass and the rigid body motions are removed from the analysis, it is possible to use not only the direct integration method in the time domain but also the mode superposition method to obtain the dynamic responses. This paper demonstrates with three examples how the present method is suitable for the dynamic analysis of a structure with multi-degree of freedom.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

휴머노이드 로봇의 동보행 안정도에 관한 연구 (A Study on the Stability of Dynamic Walking of a Humanoid Robot)

  • 이지영;조정산;이상재
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, we deal with the dynamic walking of a humanoid robot. In our method, the inverted pendulum model is used as a dynamic model for a humanoid robot in which the Zero Moment Point (ZMP) and COG constraints of the robot are analyzed by considering the motion of the robot as that of an inverted pendulum. The motion of a humanoid robot should be generated by considering the dynamics of the robot, which commonly requires a large amount of computation. If a robot walks from one position to another while keeping the ZMP in the stable region, then the robot remains dynamically stable. The linear inverted pendulum model regards the whole robot as a point mass. It is simple, and relatively less computation is needed; however, it cannot model the whole dynamics of a humanoid robot. We propose a method for modeling a humanoid robot as an inverted pendulum system having 14 point masses. We also show that the dynamic stability of a humanoid robot can be determined more precisely by our method.

화합물 반도체 본딩용 Spin Coater Module의 동특성 평가 (Dynamic Characteristic Evaluation of Spin Coater Module for GaAs Wafer Bonding)

  • 송준엽;김옥구;강재훈
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.144-151
    • /
    • 2005
  • Spin coater is regarded as a major module rotating at high speed to be used build up polymer resin thin film layer fur bonding process of GaAs wafer. This module is consisted of spin unit for spreading uniformly, align device, resin spreading nozzle and et. al. Specially, spin unit which is a component of module can cause to vibrate and finally affect to the uniformity of polymer resin film layer. For the stability prediction of rotation velocity and uniformity of polymer resin film layer, it is very important to understand the dynamic characteristics of assembled spin coater module and the dynamic response mode resulted from rotation behavior of spin chuck. In this paper, stress concentration mode and the deformed shape of spin chuck generated due to angular acceleration process are presented using analytical method for evaluation of structural safety according to the revolution speed variation of spin unit. And also, deformation form of GaAs wafer due to dynamic behavior of spin chuck is presented fur the comparison of former simulated results.

비포장노면 차량 거동 분석을 위한 타이어 테스트베드 개발 (Development of Tire Test Bed for Dynamic Behavior Analysis of Vehicles on Off-roads)

  • 이대경;손정현
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.29-35
    • /
    • 2022
  • When a vehicle is driven off a road surface, the deformations of the road surface and tire are combined. Consequently, the dynamic behavior of wheel movement becomes difficult to predict and control. Herein, we propose a tire test bed to capture the dynamic behavior of tires moving on sand and soil. Based on this study, it is discovered that the slip rate can be controlled, and the vertical force can be measured using a load cell. The test results show that this test bed can be useful for capturing the dynamic behavior of the tire and validating dynamic simulations. In fact, the tire test bed developed in this study can be used to verify the results of computer simulations. In addition, it can be used for basic experiments pertaining to the speed control of unmanned autonomous vehicles.

가변 샘플링간격 EPC/SPC 결합시스템의 개발 (Development of Integrated Variable Sampling Interval EngineeringProcess Control & Statistical Process Control System)

  • 이성재;서순근
    • 대한산업공학회지
    • /
    • 제32권3호
    • /
    • pp.210-218
    • /
    • 2006
  • Traditional statistical process control (SPC) applied to discrete part industry in the form of control charts can look for and eliminate assignable causes by process monitoring. On the other hand, engineering process control (EPC) applied to the process industry in the form of feedback control can maintain the process output on the target by continual adjustment of input variable. This study presents controlling and monitoring rules adopted by variable sampling interval (VSI) to change sampling intervals in a predetermined fashion on the predicted process levels under integrated EPC and SPC systems. Twelve rules classified by EPC schemes(MMSE, constrained PI, bounded or deadband adjustment policy) and type of sampling interval combined with EWMA chart of SPC are proposed under IMA (1,1) disturbance model and zero-order (responsive) dynamic system. Properties of twelve control rules under three patterns of process change (sudden shift, drift and random shift) are evaluated and discussed through simulation and control rules for integrated VSI EPC and SPC systems are recommended.

Influence of Process Oil Content on Properties of Silica-SBR Rubber Compounds

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.184-190
    • /
    • 2020
  • In the wet master batch process, process oil is used to improve the workability of silica-SBR. The process oil expands the polymer and provides lubrication to soften the stiff rubber chain. However, addition of excess process oil can interfere in the crosslinking reaction between rubber molecules and reduce the crosslinking density of silica-SBR. Controlling the amount of process oil is an important aspect for properly controlling the workability and crosslinking density of silica-SBR. In this study, silica-SBR was prepared by adjusting the amount of process oil to confirm its effect on silicaSBR. Vulcanization characteristics of silica-SBR were examined using a moving die rheometer. Dynamic viscoelasticity was measured using a dynamic mechanical thermal analyzer, and the mechanical properties were investigated using the universal testing machine according to ASTM D412. As a result, all silica-SBR compounds with 10 to 40 phr of process oil have effects of improving the processability and the silica dispersibility. Also, the optimum condition was determined when 10 phr of processed oil was added because the abrasion resistance was improved 65% compared to that at 40 phr.