• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,445, Processing Time 0.032 seconds

Flow Control for High Pressure Gas by using a Solenoid Valve (솔레노이드 밸브를 이용한 고압가스의 유량제어)

  • Sim Han-sub;Lee Chi-woo;Kim Nam-kyung;Ahn Kook-chan;Namkoong Chai-kwan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.156-161
    • /
    • 2005
  • Dynamic flow characteristics of a solenoid valve are affected by pressure difference in inlet and outlet of orifice, gas temperature, and supply voltage of a coil. In this paper, the dynamic flow characteristics for deviations of various conditions are studied Static and dynamic flow for variation on-time of a solenoid valve open signal are measured in basic bench test. The solenoid valve is applied to a compressed natural gas(CNG) engine test for validation of flow control performance. The experimental results show that flow of high pressure gas can controlled precisely by using a solenoid valve.

  • PDF

A Research on the Dynamic Pressure Estimation for the Control Law Design of High Speed Vehicle (초고속 비행체 제어기법 설계를 위한 비행체 동압 추정 기법 연구)

  • Park, Jungwoo;Kim, IkSoo;Park, Iksoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.953-956
    • /
    • 2017
  • This paper introduces general applications of vehicle's dynamic pressure information which is estimated during the flight. And a method to estimate the dynamic pressure for a high speed vehicle is suggested to sustain reliability of the flight under a high estimation accuracy of the information. The presented method is straightforward with simple relations of the compressible flow but is a still merited idea employed for the high speed vehicle control scheme with great accuracy.

  • PDF

Code Development for Online Assessment of Combustion Stability Margin by Utilizing Damping Ratios of Dynamic Pressure Data (동압 데이터의 감쇠계수를 활용한 연소 안정마진 실시간 평가 코드 개발)

  • Song, Won Joon;Ahn, Kwangho;Park, Seik;Kim, Sungchul;Cha, Dong Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.117-119
    • /
    • 2013
  • Combustion stability margin of a model gas turbine has been assessed by utilizing damping ratios of measured dynamic pressure data. It is known that acoustic oscillations in combustion chambers can be described as a superposition of nonlinearly interacting oscillators. Based on this theoretical background, CSMA (Combustion Stability Margin Assessment) code has been developed. The code has been employed into a model gas turbine combustion experiment, focused on the combustion instability, to show its capability to determine the damping ratio of measured dynamic pressure and further to assess combustion stability margin of the experiment, and turned out that the code works well.

  • PDF

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

Evaluation of Muscle Activity and Foot Pressure during Gait, and Isokinetic Strength and Balance in Persons with Functional Ankle Instability (기능적 발목관절 불안정성의 등속성 근력과 균형 및 보행 중에 근활성도와 발바닥압의 평가)

  • Lee, Sun-Ah;Kim, Ah-Ram;Yoo, Kyung-Tae;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.3
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSE: The purpose of this study was to investigate and evaluate muscle activity and foot pressure during gait, and isokinetic strength and balance in persons with functional ankle instability (FAI). METHODS: Nine healthy subjects (CON, n=9) without FAI and 11 patients (FAI, n=11) with FAI participated in the study after having been screened with an ankle instability instrument and a balance error scoring system. In addition, FAI was classified as non-involved (FAI-N) or involved (FAI-I), and CON was classified as dominant or non-dominant. All subjects were evaluated for isokinetic strength (plantar flexion, dorsiflexion, inversion and eversion of $30^{\circ}/sec$ and $60^{\circ}/sec$), balance (static and dynamic), muscle activity (tibialis anterior, peroneus longus and gastrocnemius) and foot pressure (static and dynamic) during gait. RESULTS: Results showed that plantar flexion (p<.05), dorsiflexion (p<.05), inversion (p<.01) and eversion (p<.00) of $60^{\circ}/sec$ were significantly decreased in FAI-I compared to those in FAI-N and CON. C 90 of static balance with eyes open (p<.01) and closed (p<.00) were significantly increased in FAI compared to those in CON. Forward position of dynamic balance (p<.01) was significantly decreased in FAI compared to that in CON. Gastrocnemius and peroneus longus of dynamic muscle activity (p<.01), left and right weight distribution of static foot pressure (p<.00) and pressure distribution of dynamic foot pressure (p<.00) were significantly decreased in FAI-I compared to those in FAI-N. CONCLUSION: We demonstrated that ankle strength, balance, muscle activity and foot pressure were significantly correlated with FAI.

The Effect of the Streamlined Shoe on Dynamic Gait Change and Foot Plantar Pressure in Healthy Young Adults

  • Shim, Jae-Hun;Koong, Hwa-Soo;Chon, Seung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.489-494
    • /
    • 2013
  • Objective: This study compared the effects of streamlined shoes on dynamic gait and foot plantar pressure in healthy young adults. Background: With the importance of ankle and lower extremity mechanism, streamlined shoes are contributing to a static gait factors. However, the study of dynamic gait factor is still insufficient. Method: Sixty subjects were randomly allocated to two groups: experimental group(n=30) and control(n=30), respectively. The experimental group performed streamlined shoes, whereas the control group applied usual shoes. Main outcome measurements were assessed contact time, step length and foot plantar pressure using gait analysis with the treadmill. Independent t-test was used to compare the both groups. Results: Compared with control group, contact time of forefoot, midfoot and hindfoot decreased significantly in experimental group(p<.05), Step length increased significantly in experimental group(p<.05). Foot plantar pressure of midfoot and hindfoot increased significantly in experimental group(p<.05), whereas that of forefoot did not show significantly in experimental group(p>.05). Conclusion: Our findings suggest that streamlined shoes was more effective than usual shoes in dynamic gait change including contact time and step length and foot plantar pressure in healthy young adults. Application: The results of streamlined shoes might help to control for the gait of industrial workers.

The Effects of the Upright Body Type Exercise Program on Foot Plantar Pressure of Archers

  • Kim, Dong-Kuk;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.285-292
    • /
    • 2016
  • Objective: This study collected data on muscle fatigue and ground reaction force during walking to provide a basis for development of custom-fitted outdoor walking shoes. The study analyzed an upright body exercise program using spine stabilization technique to determine the effect on foot plantar pressure in archers, demonstrate the effectiveness of upright body exercise, and develop a new, effective, and efficient training program. Method: A 12-week upright body exercise program was evaluated for the effect on plantar pressure in archers. Ten prize-winning archers (3 men, 7 women) in B metropolitan city, each with ${\geq}10years$ of experience, were given an explanation of the content and purpose of the program, and provided informed consent. Upright body exercise was performed 3 times a week for 12 weeks. A resistive pressure sensor was used to measure foot plantar pressure distribution and analyze quantitative information on variation in postural stability and weight shifting in dynamic balance during shooting, as well as plantar pressure in static balance with the eyes open and closed. Results: There were no significant differences in foot plantar pressure before and after participation in the exercise program. There was no statistically significant difference in foot plantar pressure in static balance with the eyes open or closed, or in foot plantar pressure in dynamic balance during shooting. Conclusion: An upright body exercise program had positive effects on foot plantar pressure in static and dynamic balance in archers by reducing body sway and physical imbalance during shooting and with eyes closed. This program is expected to help archers improve their posture and psychological state, and thereby improve performance.

Immediate Effects of Myofascial Release Using Vibration Foam Rolling Methods on Hamstrings Range of Motion, Flexibility, Pressure Pain Thresholds and Dynamic Balance

  • Kim, Ho;Shin, Wonseob
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2042-2051
    • /
    • 2020
  • Background: Many trials have been conducted the methods and types of intervention of form rollers, but no research has been done yet that mixes the methods and types of intervention. Objectives: To analyze the effects of myofascial release on the improvement of range of motion (ROM), flexibility, pain pressure threshold, and balance. Design: Randomized controlled trial. Methods: All subjects measured ROM, flexibility, pressure pain threshold, and dynamic balance by pre-test. After pre-test, subjects were randomized that static-vibration foam rolling group (n=12), dynamic-vibration foam rolling group (n=12), general foam rolling group (n=12). For the intervention, 3 sets of 90 seconds were applied to each group, and rest time was set to 60 seconds between sets. In the post-test and follow-up test after 10 minutes, all three groups were measured the ROM, flexibility, pressure pain threshold, and dynamic balance. Results: The results of comparing ROM, flexibility, pressure pain thresholds, dynamic balance ability appeared higher significant difference in the pre-post-10 minutes follow up test in comparison between time in the intragroup (P<.001). As a result of comparing the change of pre-post-10 minutes follow up, static vibration foam rolling showed higher significant difference compared to control groups (P<.001). Conclusion: Through this study, when foam rolling is applied within the same intervention time, static foam rolling can be expected to have a better effect than the existing dynamic foam rolling as well as vibration foam roller can expect better effect than general foam rolling.

Effects of Gastrocnemius Muscle Length on the Dynamic Balance and Antero-posterior Pressure Distribution of Foot (장딴지근 길이가 동적 균형 및 발바닥의 앞뒤 압력 분포에 미치는 영향)

  • Lee, Won-Hwee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.150-157
    • /
    • 2019
  • The purpose of this study was investigate the effect of gastrocnemius(GCM) muscle length on the dynamic balance and antero-posterior pressure distribution of foot. Thirty subjects were recruited and each subject was classified with control experimental and control group according to GCM muscle length. The experimental group included subjects with shortness of GCM muscle length, the control group included subjects with normal length of GCM. The dynamic balance and antero-posterior pressure distribution of foot were measured by Biorescue equipment. To evaluate dynamic balance, we collected data of limit of stability in antero-posterior direction. We analyzed the data by using independent t-test. The alpha level was set 0.05. The results showed that the dynamic balance and antero-posterior pressure distribution of foot were significantly different between two groups (p<0.05). This study suggests that the shortness of GCM affects anterior limited of stability in dynamic balance and anterior pressure distribution of foot. Therefore, it is important to maintain optimal GCM muscle length for normal balance ability and prevention of musculoskeletal disease.

Effect of Dynamic SGS Model in a Kerosene-LOx Swirl Injector under Supercritical Condition

  • Heo, Jun-Young;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.254-263
    • /
    • 2015
  • In this study, numerical simulations are carried out to investigate the dynamic SGS model effects in a Kerosene-LOx coaxial swirl injector under high pressure conditions. The turbulent model is based on large-eddy simulation (LES) with real-fluid transport and thermodynamics. To assess the effect of the dynamic subgrid-scale (SGS) model, the dynamic SGS model is compared with that of the algebraic SGS model. In a swirl injector under supercritical pressure, the characteristics of temporal pressure fluctuation and power spectral density (PSD) present comparable discrepancies dependant on the SGS models, which affect the mixing characteristics. Mixing efficiency and the probability density (PDF) function are conducted for a statistical description of the turbulent flow fields according to the SGS models. The back-scattering of turbulent kinetic energy is estimated in terms of the film thickness of the swirl injector.