• Title/Summary/Keyword: Dynamic Pressure

Search Result 2,441, Processing Time 0.031 seconds

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Effects of Etch Parameters on Etching of CoFeB Thin Films in $CH_4/O_2/Ar$ Mix

  • Lee, Tea-Young;Lee, Il-Hoon;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.390-390
    • /
    • 2012
  • Information technology industries has grown rapidly and demanded alternative memories for the next generation. The most popular random access memory, dynamic random-access memory (DRAM), has many advantages as a memory, but it could not meet the demands from the current of developed industries. One of highlighted alternative memories is magnetic random-access memory (MRAM). It has many advantages like low power consumption, huge storage, high operating speed, and non-volatile properties. MRAM consists of magnetic-tunnel-junction (MTJ) stack which is a key part of it and has various magnetic thin films like CoFeB, FePt, IrMn, and so on. Each magnetic thin film is difficult to be etched without any damages and react with chemical species in plasma. For improving the etching process, a high density plasma etching process was employed. Moreover, the previous etching gases were highly corrosive and dangerous. Therefore, the safety etching gases are needed to be developed. In this research, the etch characteristics of CoFeB magnetic thin films were studied by using an inductively coupled plasma reactive ion etching in $CH_4/O_2/Ar$ gas mixes. TiN thin films were used as a hardmask on CoFeB thin films. The concentrations of $O_2$ in $CH_4/O_2/Ar$ gas mix were varied, and then, the rf coil power, gas pressure, and dc-bias voltage. The etch rates and the selectivity were obtained by a surface profiler and the etch profiles were observed by a field emission scanning electron microscopy. X-ray photoelectron spectroscopy was employed to reveal the etch mechanism.

  • PDF

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.

Cases Study of Accidents in High Risk Organizations by System Dynamics (시스템 다이내믹스 기법을 활용한 고위험 조직 사고 사례 분석)

  • Oh, Youngmin;Ryu, Jin
    • Korean System Dynamics Review
    • /
    • v.16 no.3
    • /
    • pp.5-29
    • /
    • 2015
  • The importance of the concept of safety culture has increased in the security of high-risk facility after Chernobyl accident in 1986. This paper elaborated the concept of safety culture and its main factors by Causal Loop Diagram. Due to the decline of safety culture, the occurrence of incidents and accidents require more and more corrective actions to the members of high-risk facilities and thereby increasing their workloads. Employees who must complete the task within the given time have to have time pressures and don't comply with the rules and procedures. Also, a schedule pressure is a big stress for employees, causing mistakes in precision work. In order to improve these problems, CLD of the safety culture in this paper suggests hiring more workers, re-allocation of given workloads and strengthen the learning, communication capabilities and safety leadership. In addition, the two real accident cases were analyzed to test the feasibility of the System Dynamic simulation model through the process of structuring the fault trees on the stationary black out accident in Kori unit 1 in South Korea and Kleen Energy power station explosion in US. The simulation results show that the various safety factors cause the serious accident combined with mechanical failure and safety culture will reduce the possibility of the accidents in these high-risk organizations. This simulation model can contribute to analyzing the impact of the organizational and human factors of safety culture and can provide the alternatives in high-risk facilities.

Study on the Modal Test for a Turbocharger Wheel Using Vibro-acoustic Responses (진동 방사음을 이용한 터보차져 휠 동특성 시험에 대한 고찰)

  • Lee, Hyeong-Ill;Lee, Dug-Young;Park, Ho-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-37
    • /
    • 2011
  • The modal characteristics of a compressor wheel of an automotive turbocharger have been investigated using an experimental method based on an acoustic frequency response function, p/f(${\omega}$), where p is sound pressure radiated from a structure, and f is impact force. First, a well-defined annular disc with narrow radial slots was examined to check whether the vibro-acoustic test could precisely determine natural quencies and vibration modes of structures showing that the vibro-acoustic test proposed in this paper was comparable to the conventional modal test with an accelerometer and the numerical analysis. The conventional method has been found to be inappropriate for compressor wheel because of additional mass due to the accelerometer and additional damping from the accelerometer cable alter the dynamic responses of the wheel blades. odal characteristics of the wheel have been defined using vibro-acoustic test and verified with the results from another conventional method using a laser vibrometer. Natural quencies and mode shapes of a turbocharger wheel, which can't be precisely obtained with onventional method, could be defined accurately without the additional effects from sensor and cable. Proposed method can be applied to small structures where conventional sensors and cables could generate troubles.

Stability Rating Tests for Optimization of Axial Baffle Length (배플 길이의 최적화를 위한 연소 안정성 평가 시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Seo, Seong-Hyeon;Kim, Seung-Han;Han, Yeoung-Min;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • To optimize and limit the axial length of the baffle of the KSR-III engine, stability rating tests using pulse gun as one of artificial disturbance devices have been done. Generally a rocket engine can be considered to be dynamically stable if a certain imposed external perturbation or pressure oscillation in rocket combustion chamber could be suppressed within a short time period. Decay time and other parameters for the evaluation of stabilization ability of an engine to external perturbation have been analyzed to quantify stabilization capacity of engine, in other words, dynamic stability margin. Baffle not covering flame zone enough which can be considered as collision region of injector wasn't be able to suppress external perturbation sufficiently. The limit of combustion stability margin of engine is assumed to be 50 mm length baffle of the KSR-III engine.

Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor (신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향)

  • Kim, Kwan-Tae;Hwang, Na-Kyung;Lee, Jae-Ok;Lee, Dae-Hoon;Hur, Min;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

A Review of Effects of Osteoarthritic Patient with a Varus Deformity of the Knee on Laterally Wedged Insole (외측 쐐기 깔창이 골관절염 환자의 내반슬에 미치는 영향에 관한 고찰)

  • Lee, Sang-Yong;Shin, Hyung-Soo;Bae, Sung-Soo
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.65-73
    • /
    • 2005
  • Osteoarthritis has been considered a disease of the elderly because it is uncommon before the age of 40 years and is seen in approximately 80% of United States citizens older than 65 years. general population on kuri city in korea revealed that prevalence of knee osteoarthritis is 10.2%, increasing with age. High level of physical activity in men and age, post-menopause and obesity in women can be risk factor. Osteoarthritis is no evidence that a acquired process initiated much earlier in life through mechanical, metabolic, genetic, or other origins. A high tibial osteotomy alters static lower extremity alignment thereby decreasing medial compartment loading. As well, conservative treatment strategies, such as knee braces and valgus heel wedges, affect lover limb mechanics and attempt to reduce medial compartment loading. It was hypothesized that valgus heel wedges and modified orthoses would shift the center of pressure laterally on the foot during level walking, reducing the moment arm of the adduction moment in the frontal plane, thereby resulting in a decrease in the knee adduction moment. In the 1980s, the effect of wearing a laterally wedged insole on osteoarthritic patients with a varus deformity of the knee was firsted, and since then, kinematic and kinetic analyses concerning this condition have mainly focused on a static standing position. Since the early 1990s, the beneficial effect of wearing a laterally wedged insole to treat osteoarthritis of the knee has also been reported in dynamic conditions, but these studies did not answer the question of the kinematic and kinetic mechanisms that resulted in the reduced symptoms in patents with knee osteoarthritis. therefore, the effect of wearing laterally wedged insole has not been sufficiently studied.

  • PDF

RELATIONSHIPS OF THE SOLAR WIND PARAMETERS WITH THE MAGNETIC STORM MAGNITUDE AND THEIR ASSOCIATION WITH THE INTERPLANETARY SHOCK

  • OH SU YEON;YI YU
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.151-157
    • /
    • 2004
  • It is investigated quantitative relations between the magnetic storm magnitude and the solar wind parameters such as the Interplanetary Magnetic Field (hereinafter, IMF) magnitude (B), the southward component of IMF (Bz), and the dynamic pressure during the main phase of the magnetic storm with focus on the role of the interplanetary shock (hereinafter, IPS) in order to build the space weather fore-casting model in the future capable to predict the occurrence of the magnetic storm and its magnitude quantitatively. Total 113 moderate and intense magnetic storms and 189 forward IPSs are selected for four years from 1998 to 2001. The results agree with the general consensus that solar wind parameter, especially, Bz component in the shocked gas region plays the most important role in generating storms (Tsurutani and Gonzales, 1997). However, we found that the correlations between the solar wind parameters and the magnetic storm magnitude are higher in case the storm happens after the IPS passing than in case the storm occurs without any IPS influence. The correlation coefficients of B and $BZ_(min)$ are specially over 0.8 while the magnetic storms are driven by IPSs. Even though recently a Dst prediction model based on the real time solar wind data (Temerin and Li, 2002) is made, our correlation test results would be supplementary in estimating the prediction error of such kind of model and in improving the model by using the different fitting parameters in cases associated with IPS or not associated with IPS rather than single fitting parameter in the current model.

Multi-dimensional wind vibration coefficients under suction for ultra-large cooling towers considering ventilation rates of louvers

  • Ke, S.T.;Du, L.Y.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.273-283
    • /
    • 2018
  • Currently, the dynamic amplification effect of suction is described using the wind vibration coefficient (WVC) of external loads. In other words, it is proposed that the fluctuating characteristics of suction are equivalent to external loads. This is, however, not generally valid. Meanwhile, the effects of the ventilation rate of louver on suction and its WV are considered. To systematically analyze the effects of the ventilation rate of louver on the multi-dimensional WVC of ultra-large cooling towers under suctions, the 210 m ultra-large cooling tower under construction was studied. First, simultaneous rigid pressure measurement wind tunnel tests were executed to obtain the time history of fluctuating wind loads on the external surface and the internal surface of the cooling tower at different ventilation rates (0%, 15%, 30%, and 100%). Based on that, the average values and distributions of fluctuating wind pressures on external and internal surfaces were obtained and compared with each other; a tower/pillar/circular foundation integrated simulation model was developed using the finite element method and complete transient time domain dynamics of external loads and four different suctions of this cooling tower were calculated. Moreover, 1D, 2D, and 3D distributions of WVCs under external loads and suctions at different ventilation rates were obtained and compared with each other. The WVCs of the cooling tower corresponding to four typical response targets (i.e., radial displacement, meridional force, Von Mises stress, and circumferential bending moment) were discussed. Value determination and 2D evaluation of the WVCs of external loads and suctions of this large cooling tower at different ventilation rates were proposed. This study provides references to precise prediction and value determination of WVC of ultra-large cooling towers.