• Title/Summary/Keyword: Dynamic Power Distribution Control

Search Result 108, Processing Time 0.025 seconds

Performance Improvement of Air Conditioner Network System using Wireless Sensors Through System Performance Index and Dynamic Power Distribution Control (시스템 성능 지수 및 동적 전력분산 제어를 통한 무선센서를 이용한 에어컨 네트워크 시스템의 성능 개선)

  • Choi, Ho-seek;Kwon, Woo-hyen;Yoon, Byung-keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Wireless sensors have been developed in numerous ways for enhancing the convenience of installation, management and maintenance of sensors. Energy harvesting wireless sensors, which can collect energy from the external environment for permanent usage without the need of recharging and exchanging batteries, have been developed and employed used in Internet of Things and at various industrial sites. Energy harvesting wireless sensors are significantly affected by the sensor lifespan to sudden variation in the external environment. Furthermore, reduction in the sensor operating timespan can greatly affect the characteristics of the devices connected through a network. In this paper, a system performance index is proposed that can comprehensively evaluate the lifespan of a solar cell wireless sensor, determine the characteristics of devices connected to the associated network, and recommend dynamic power distribution control for improving the system performance index. Improvement in the system performance index was verified by applying the proposed dynamic power distribution control to an air conditioner network system using a solar cell wireless sensor. Obtained results corroborate that the dynamic power distribution control can extend the lifespan of the incorporated wireless sensor and reduce the air conditioner's power consumption.

Improving the Dynamic Performance of Distribution Electronic Power Transformers Using Sliding Mode Control

  • Hooshmand, Rahmat-Allah;Ataei, Mohammad;Rezaei, Mohammad Hosein
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.145-156
    • /
    • 2012
  • These days, the application of electronic power transformers (EPTs) is expanding in place of ordinary power transformers. These transformers can transmit power via three or four wire converters. Their dynamic performance is extremely important, due to their complex structure. In this paper, a new method is proposed for improving the dynamic performance of distribution electronic power transformers (DEPT) by using sliding mode control (SMC). Hence, to express the dynamic characteristics of a system, different factors such as the voltage unbalance, voltage sag, voltage harmonics and voltage flicker in the system primary side are considered. The four controlling aims of the improvement in dynamic performance include: 1) maintaining the input currents so that they are in sinusoidal form and in phase with the input voltages so they have a unity power factor, 2) keeping the dc-link voltage within the reference amount, 3) keeping the output voltages at a fixed amount and 4) keeping the output voltages in sinusoidal and symmetrical forms. Simulation results indicate the potential and capability of the proposed method in improving DEPT behavior.

Power Distribution and Coordinated Control for a Power Split Hybrid Electric Bus

  • Wang, Feng;Zhong, Hu;Ma, Zi-Lin;Mao, Xiao-Jian;Zhuo, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.593-598
    • /
    • 2008
  • The power distribution is proposed to determine the target operating points of the system components as the basis for maximal the efficiency of the overall system for a power split dual electric machine hybrid electric bus. The coordinated control is constructed on the basis of the power distribution. The basic coordinated control is implemented to satisfy the driver's power demand, in which both the dynamic characteristics of the engine and the dual electric machine are explicitly taken into account. Moreover, the improved coordinated control is suggested to suppress engine dynamic operation and rich fuel injection.

Power Control & Distribution Unit Development for Bus Power Control of Communication Satellite with Large Capacity (대용량 통신위성 전력조절을 위한 전력제어장치개발)

  • Choi Jaedong
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • This paper presents Power Control and Distribution Unit development of GEO satellite with 3kW power output. The sensing error of bus voltage produce control signal of the shunt switch assembly and battery power converter, and the tolerance of error signals generated decide the stability of proposed system. The dynamic characteristics of main bus according to the load changing and the control logic of FPGA are simulated. In order to verify the proposed design, the simulation and experimental results for solar array shunt switch, battery power converter and bus controller are shown.

  • PDF

A Case Study Of Construction Quality And Measurement Control of High Rock Embankment (고성토 암버력 지반의 시공품질 및 계측관리 사례)

  • Bae, Kyung-Tae;Cha, Kyung-Seob;Park, Yong-Man;Kim, Kang-Kyu;Kim, Hyung-Suk;Yi, Chang-Tok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.891-898
    • /
    • 2009
  • A high rock embankment by means of dynamic compaction has hardly carried out in domestic area. For the successful accomplishment of such a high rock embankment, construction quality and measurement control are conducted. Plate loading tests are carried out to verify the bearing capacity and safety against the long term settlement. In addition, settlement of each layer is measured in order to verify the effect of dynamic compaction and to predict long term settlement.

  • PDF

A NARX Dynamic Neural Network Platform for Small-Sat PDM (동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구)

  • Lee, Hae-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.809-817
    • /
    • 2020
  • In the design and development process of Small-Sat power distribution and transmission module, the stability of dynamic resources was evaluated by a deep learning algorithm. The requirements for the stability evaluation consisted of the power distribution function of the power distribution module and demand module to the SAR radar in Small-Sat. To verify the performance of the switching power components constituting the power module PDM, the reliability was verified using a dynamic neural network. The adoption material of deep learning for reliability verification is the power distribution function of the payload to the power supplied from the small satellite main body. Modeling targets for verifying the performance of this function are output voltage (slew rate control), voltage error, and load power characteristics. First, to this end, the Coefficient Structure area was defined by modeling, and PCB modules were fabricated to compare stability and reliability. Second, Levenberg-Marquare based Two-Way NARX neural network Sigmoid Transfer was used as a deep learning algorithm.

Premium Power Quality Using Combination of Microturbine Unit and DC Distribution System

  • Noroozian, Reza;Abedi, Mehrdad;Gharehpetian, Gevorg
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.103-115
    • /
    • 2010
  • This paper discusses a DC distribution system which has been supplied by external AC systems as well as local microturbine distributed generation system in order to demonstrate an overall solution to power quality issue. Based on the dynamic model of the converter, a design procedure has been presented. In this paper, the power flow control in DC distribution system has been achieved by network converters. A suitable control strategy for these converters has been proposed, too. They have DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control system has been proposed for MT converter. Several case studies have been studied and the simulation results show that DC distribution system including microturbine unit can provide the premium power quality using proposed methods.

"Optimal Control of - Hydraulic Sources of Han River by Multiple Dynamic Programwing" (Dynamic Programming에 의한 최적제어)

  • 양흥석;박영문
    • 전기의세계
    • /
    • v.23 no.3
    • /
    • pp.53-59
    • /
    • 1974
  • The purpose of this paper is to use hydraulic sources optimally on the hydro-thermal power coordination in power system of Korea by means of Multiple Dynamic Programming. Four principal hydraulic power plans of Korea; Whachon, Chunchon, Uiam and Chong-pyong which are located on Han river side are treated in this research. For the illustrative purpose, a case study was made on the year round monthy optimal water control under the given load distribution and constraints.

  • PDF

Dynamic Analysis of Variable Speed Wind Power Systems with Doubly-Fed Induction Generators (이중여자 유도발전기에 의한 가변속 풍력 발전시스템의 동특성 해석)

  • Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.325-336
    • /
    • 2006
  • This paper deals with the dynamic analysis of variable speed wind power systems with doubly-fed induction generators (DFIG). First, the mathematical modeling of wind farm which consists of turbine rotor, DFIG, rotor side and grid side converter and control systems is presented. In particular, the equation for dynamic modeling of the DFIG and the AC/DC/AC converter is expressed as dq reference frame. And then, on the basis of mathematical modeling for each component of wind farm, dynamic simulation algorithms for speed and pitch angle control of wind turbine and generated active and reactive power control of the DFIG and the AC/DC/AC converter are established. Finally, Using the MATLAB/SIMULINK, this paper presents dynamic simulation model for 6MW wind power generation systems with the DFIG considering distribution systems and performs the dynamic analysis of wind power systems in steady state. Moreover, this paper also presents the dynamic performance for the case when the voltage sag in grid source and phase fault in bus are occurred.

Adaline-Based Control of Capacitor Supported DVR for Distribution System

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.386-395
    • /
    • 2009
  • In this paper, a new control algorithm for the dynamic voltage restorer (DVR) is proposed to regulate the load terminal voltage during various power quality problems that include sag, swell, harmonics and unbalance in the voltage at the point of common coupling (PCC). The proposed control strategy is an Adaline (Adaptive linear element) Artificial Neural Network (ANN) and is used to control a capacitor supported DVR for power quality improvement. A capacitor supported DVR does not need any active power during steady state because the voltage injected is in quadrature with the feeder current. The control of the DVR is implemented through derived reference load terminal voltages. The proposed control strategy is validated through extensive simulation studies using the MATLAB software with its Simulink and SimPower System (SPS) toolboxes. The DVR is found suitable to support its dc bus voltage through the control under various disturbances.