• Title/Summary/Keyword: Dynamic Network

Search Result 3,195, Processing Time 0.033 seconds

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

Study of Multiple Interface Control and Dynamic Delivery Model for Seamless Mobile Transportation

  • Lee, Seon-Ung;Moon, Il-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.399-404
    • /
    • 2010
  • We propose a seamless IPTV transport technology of mobile device. This technology uses multiple interfaces of wireless communication on mobile device. This proposal for transportation of mobile IPTV contents is more mobile and adaptable than other wireless technologies that are currently being used. Algorithm of proposed technology is as follow. When the signal strength of the connected wireless network interface of mobile device is getting lower than specified level, another wireless network interface is connected to continue downloading the IPTV contents in advance. Another connection is maintained until the signal strength of the first connected interface is stable or the interface is connected to another base station (or AP) that have good signal strength. For more seamless services, we consider classifying the packets of mobile IPTV and using dynamic content quality select techniques. Dynamic content quality selection is based on notifying transfer rate to the content delivery network (CDN) server. The proposed technology is expected to use efficiently with both mobile IPTV and the transportation of mobile P2P/P4P.

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

Dynamic Line Rating Prediction in Overhead Transmission Lines Using Artificial Neural Network (신경회로망을 이용한 송전선 허용용량 예측기법)

  • Noh, Shin-Eui;Kim, Yi-Gwhan;Lim, Sung-Hun;Kim, Il-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.79-87
    • /
    • 2014
  • With the increase of demand for electricity power, new construction and expansion of transmission lines for transport have been required. However, it has been difficult to be realized by such opposition from environmental groups and residents. Therefore, the development of techniques for effective use of existing transmission lines is more needed. In this paper, the major variables to affect the allowable transmission capacity in an overhead transmission lines were selected and the dynamic line rating (DLR) method using artificial neural networks reflecting unique environment-heat properties was proposed. To prove the proposed method, the analyzed results using the artificial neural network were compared with the ones obtained from the existing method. The analyzed results using the proposed method showed an error of 0.9% within ${\pm}$, which was to be practicable.

Distributed Information Extraction in Wireless Sensor Networks using Multiple Software Agents with Dynamic Itineraries

  • Gupta, Govind P.;Misra, Manoj;Garg, Kumkum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.123-144
    • /
    • 2014
  • Wireless sensor networks are generally deployed for specific applications to accomplish certain objectives over a period of time. To fulfill these objectives, it is crucial that the sensor network continues to function for a long time, even if some of its nodes become faulty. Energy efficiency and fault tolerance are undoubtedly the most crucial requirements for the design of an information extraction protocol for any sensor network application. However, most existing software agent based information extraction protocols are incapable of satisfying these requirements because of static agent itineraries and large agent sizes. This paper proposes an Information Extraction protocol based on Multiple software Agents with Dynamic Itineraries (IEMADI), where multiple software agents are dispatched in parallel to perform tasks based on the query assigned to them. IEMADI decides the itinerary for an agent dynamically at each hop using local information. Through mathematical analysis and simulation, we compare the performance of IEMADI with a well known static itinerary based protocol with respect to energy consumption and response time. The results show that IEMADI provides better performance than the static itinerary based protocols.

Abbreviated ID Conflict Management Method for Efficient Data Forwarding on Dynamic IoT Networks (동적 사물인터넷에서 효율적인 데이터 전달을 위한 축약 ID의 충돌 관리 기법)

  • Son, Sanghyun;Jung, Yeonsu;Jeon, Yongsu;Lee, Seungjin;Baek, Yunju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.200-201
    • /
    • 2016
  • Recently, according to era of Internet of Things was opened, various mobile devices connected to the internet using wireless communication. Many IoT devices have limited communication performance. Thus, these devices efficiently forward data using an abbreviated ID method. However, movement of devices causes abbreviated ID confliction, and These conflict degraded network performance. Therefore it is important management of ID conflict. In this paper, we proposed an abbreviated ID conflict management method to improve the efficiency of communication in the dynamic IoT network.

  • PDF

A Visualization Based Analysis on Dynamic Bandwidth Allocation Algorithms for Optical Networks

  • Kamran Ali Memon;Khalid Husain Mohmadani ;Saleemullah Memon;Muhammad Abbas;Noor ul Ain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.204-209
    • /
    • 2023
  • Dynamic Bandwidth Allocation (DBA) methods in telecommunication network & systems have emerged with mechanisms for sharing limited resources in a rapidly growing number of users in today's access networks. Since the DBA research trends are incredibly fast-changing literature where almost every day new areas and terms continue to emerge. Co - citation analysis offers a significant support to researchers to distinguish intellectual bases and potentially leading edges of a specific field. We present the visualization based analysis for DBA algorithms in telecommunication field using mainstream co-citation analysis tool-CiteSpace and web of science (WoS) analysis. Research records for the period of decade (2009-2018) for this analysis are sought from WoS. The visualization results identify the most influential DBA algorithms research studies, journals, major countries, institutions, and researchers, and indicate the intellectual bases and focus entirely on DBA algorithms in the literature, offering guidance to interested researchers on more study of DBA algorithms.

A Source Code Cross-site Scripting Vulnerability Detection Method

  • Mu Chen;Lu Chen;Zhipeng Shao;Zaojian Dai;Nige Li;Xingjie Huang;Qian Dang;Xinjian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1689-1705
    • /
    • 2023
  • To deal with the potential XSS vulnerabilities in the source code of the power communication network, an XSS vulnerability detection method combining the static analysis method with the dynamic testing method is proposed. The static analysis method aims to analyze the structure and content of the source code. We construct a set of feature expressions to match malignant content and set a "variable conversion" method to analyze the data flow of the code that implements interactive functions. The static analysis method explores the vulnerabilities existing in the source code structure and code content. Dynamic testing aims to simulate network attacks to reflect whether there are vulnerabilities in web pages. We construct many attack vectors and implemented the test in the Selenium tool. Due to the combination of the two analysis methods, XSS vulnerability discovery research could be conducted from two aspects: "white-box testing" and "black-box testing". Tests show that this method can effectively detect XSS vulnerabilities in the source code of the power communication network.

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

A study on the Adaptive Controller with Chaotic Dynamic Neural Networks

  • Kim, Sang-Hee;Ahn, Hee-Wook;Wang, Hua O.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2007
  • This paper presents an adaptive controller using chaotic dynamic neural networks(CDNN) for nonlinear dynamic system. A new dynamic backpropagation learning method of the proposed chaotic dynamic neural networks is developed for efficient learning, and this learning method includes the convergence for improving the stability of chaotic neural networks. The proposed CDNN is applied to the system identification of chaotic system and the adaptive controller. The simulation results show good performances in the identification of Lorenz equation and the adaptive control of nonlinear system, since the CDNN has the fast learning characteristics and the robust adaptability to nonlinear dynamic system.