
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, Jun. 2023 1689
Copyright ⓒ 2023 KSII

This work is supported by Research on Key Technologies of Power Mobile Security Protection oriented to Micro
Application Architecture under Grant number 5700-202258200A-1-1-ZN.

http://doi.org/10.3837/tiis.2023.06.009 ISSN : 1976-7277

A Source Code Cross-site Scripting
Vulnerability Detection Method

Mu Chen1,2*, Lu Chen1,2, Zhipeng Shao1,2, Zaojian Dai1,2, Nige Li1,2,

Xingjie Huang3, Qian Dang4, and Xinjian Zhao5
1 State Grid Smart Grid Research Institute Co.,Ltd,

2 State Grid Laboratory of Power cyber-Security Protection and Monitoring Technology,
Nanjing 210003, China

[e-mail: 3306940579@qq.com, 46152570@qq.com, shaozhipeng@geiri.sgcc.com.cn,
dzj2002dzj@163.com, 48548962@qq.com]

3 State Grid Information & Telecommunication Branch,
Beijing 100000, China

[e-mail: xingjie-huang@sgcc.com.cn]
4 State Grid Gansu Electric Power Company

Beijing 100761, China
[e-mail: 54295925@qq.com]

5 State Grid Jiangsu Electric Power Company
Nanjing 210003, China

[e-mail: zhaoxj1@js.sgcc.com.cn]
*Corresponding author: Mu Chen

Received November 3, 2022; revised January 16, 2023; accepted April 26, 2023;

published June 30, 2023

Abstract

To deal with the potential XSS vulnerabilities in the source code of the power
communication network, an XSS vulnerability detection method combining the static
analysis method with the dynamic testing method is proposed. The static analysis method
aims to analyze the structure and content of the source code. We construct a set of feature
expressions to match malignant content and set a "variable conversion" method to analyze
the data flow of the code that implements interactive functions. The static analysis method
explores the vulnerabilities existing in the source code structure and code content. Dynamic
testing aims to simulate network attacks to reflect whether there are vulnerabilities in web
pages. We construct many attack vectors and implemented the test in the Selenium tool. Due
to the combination of the two analysis methods, XSS vulnerability discovery research could
be conducted from two aspects: “white-box testing” and “black-box testing”. Tests show that
this method can effectively detect XSS vulnerabilities in the source code of the power
communication network.

Keywords: Vulnerability detection, XSS(cross-site scripting) vulnerability, Static analysis,
Dynamic testing, Webpage attack simulation

1690 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

1. Introduction

With the continuous development and the increasing expansion of power networks,
The security of the network’s communication is becoming increasingly significant.
Cross-site Scripting Vulnerability(XSS) is one of the network security issues with
widespread occurrence [1]and would cause heavy property losses. In the 2021-Top ten
vulnerabilities[2] published by OWASP(Open Web Application Security Project)
organization, injection attack ranks the top three, and XSS ranks in the top ten. It follows
that XSS is still one of the intractable obstacles to the security of power communication
networks [3].

The essence of the XSS is to inject malicious scripts into the network, so it
belongs to the injection attack. There are two main ways to realize injection operation.
First is the “black-box attack.” Attacks are conducted by attackers without power
network manipulation authority. For example, if there is no filtering mechanism for
checking input content, the input tag on the web pages would be used as an XSS
injection point.

The second is the “white-box attack”. Attackers have the right to manipulate the
network content. The malicious script would exist or hide in the webpage code —such as
the attributes and events within the tags on the webpages.

The research on XSS vulnerability detection mainly includes static analysis
methods, dynamic testing methods, and machine learning methods [3]. “White-box
attacks” can be solved through static analysis [4]. In addition, it can combine data flow
analysis to achieve a more effective analysis of the source code structure of the web
page[5]. The dynamic testing method could test the defense quality of web pages by
imitating “black-box attacks” [6]to explore potential weaknesses. Machine learning
adopts many classification algorithms, such as reinforcement learning and integrated
learning algorithms. The detection is completed by building a classification model [7].

Compared with the static analysis method, although the machine learning method
could reduce the code audit cost, there remain similarities among the processing
procedures. Both rely on inductive features to work, which is why they cannot respond
to vulnerability changes at the right moment [3]. The dynamic analysis method can
detect the malignant content of the web page in the actual running environment by
constructing attack vectors and combining network flow analysis [8]and the packet
analysis method. Also, it could monitor the web page status in real time through the web
page detection tool. Hence, the dynamic way performs better in handling constantly
changing attack ways.

From analyzing black-box and white-box attacks, an XSS detection method, which
combines dynamic testing methods and static analysis methods, is proposed. Section 2 of
this paper introduces related work, the existing scheme, and the detection method mixed
with dynamic and static analysis. Section 3 gives the overall structure of the
vulnerability detection model and describes the implementation of each module. Section
4 provides the detection effect and the comparative experimental results. Finally, it is
summarized in Section 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1691

2. Related Work

There exist many research schemes, coming from the aspects of static analysis, dynamic
testing, and machine learning methods, to solve XSS vulnerabilities in the
communication networks for the power industry.

Rathore et al. [9]extracted URL, HTML, and SNS from the social network to
construct features and used ten-fold cross-validation to process and extract features. Ten
classifiers achieve XSS vulnerability detection. It has good accuracy. Wang et al.
[10]used the static analysis method to scan browser listing permissions, script content,
background pages, and CSS files and summarized many key features. Then they input
the features into the “sklearn” classification framework to build a vulnerability detection
model. However, machine learning detection methods are highly dependent on data
features and cannot deal with constantly changing vulnerabilities. Tariq et al. [11]used the
30 features proposed by Zhou and Wang [12]and applied the basic genetic algorithm to
detect malicious XSS payloads. After the training of the feature dataset, the accuracy of
“feature confirmation” is as low as 5.78%, and the accuracy of “feature script” is as low as
69.60%. After that, the model is trained by updating the attack vector in the training data
and using reinforcement learning. Accuracy is improved. But the model complexity is
high.

Gu et al. [13]completed dynamic analysis by decomposing malignant loads into load
units, then combining load units in coding to generate targeted loads for dynamic
detection. According to the HTML static markup mechanism, Hou et al. [14]marked
webpage tags and scripts respectively from the perspective of “black-box testing”. Then,
they construct the attack vectors by combining the tag content and finally realize
vulnerability detection during the web attack simulation. Their method yields good
accuracy.

Through the technical research and analysis of the existing scheme. We concluded
that the critical step of vulnerability detection is that detection should be conducted
during running the program. Meanwhile, the static analysis could be carried out before
running the program to better understand the source code's structure, parts, and security
degree. Therefore, this paper proposes a detection method combining dynamic testing
and static analysis method. Set the attack vector and malignant content feature
expression as the detection tool. Inspired by the genetic algorithm [15][16], we construct
the attack vectors with payload elements [17][18]and deformation features which are
similar to the mutation operation in the genetic algorithm. The feature expressions are
constructed based on the malignant content feature analysis. As a matching tool for
malignant content, feature expression could reduce the cost of building a malignant
feature database.

3. XSS Vulnerability Detection Model

This chapter shows the implementation details of the vulnerability detection model,
including the statement of the overall architecture of the model and the roles of each module.
Also, the implementation of the static analysis method and the dynamic test method in the
model is described, and the detection standards of the two ways are given.

1692 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

3.1 Model Structure

The vulnerability detection model constructed in this paper could detect three types of
XSS vulnerabilities: “Reflective-XSS,” “Stored-XSS,” and “DOM-XSS.” The detection
model comprises preprocessing module, content extraction module, detection tool
construction module, and vulnerability detection module. The execution flow of each
module is shown in Fig. 1. Detecting Tools, storage structures, and some operations in
the detection model are displayed as symbols. The details are shown in Table 1.

Table 1. Symbol definition table
Symbol Description

FE Feature Expression
Payload The attack vectors

ICN Tag Token: id-class-name
VariM The matrix store the information on variables
TagM The matrix store the information of HTML tags

InputM The matrix store the information of HTML input elements
ES The Execute_script() function in the Selenium

DocumentOP Actions within the page using the Document keyword
1） Preprocessing module: There may be confusion operations in the source code

of web pages to avoid security review. The existence of confusion makes source
code analysis impossible or incorrect. Therefore, preprocessing operations are
set up to format the source code to eliminate most of the confusion.
Preprocessing operations include:
1. use lowercase letters except for built-in global objects and built-in functions
2. decode Unicode encoding content and URL encoding content
3. clear closed complete comments within the source code
4. replace consecutive spaces with single spaces and eliminate the tab character
at the beginning of the line

2） Content extraction module: The content extraction module is responsible for
extracting the critical code of the web page. The following three parts will be
extracted: web input elements such as “input,” and “textarea” tags, HTML tags
vulnerable to injection attacks, and web script code.

3） Detection tool building module: Attack vectors and feature expressions are
critical tools for model vulnerability detection. The details of its construction
will be described in sections 3.2 and 3.3.

4） Vulnerability detection module: The details of the vulnerability detection
module will be described in Section 3.4.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1693

Construct Detection ToolExtract ScriptDispose Code

Output vulnerability
point

Set source type: String

Set the letters to lowercase

Decode Unicode encoding, URL encoding

Adjust consecutive Spaces to single
Spaces

Remove closed complete comments

Extract JavaScript script

Extract source input
elements

Extract sensitive Tag
contents

Construct attack vectors

Construct Feature
Expression

XSS Vulnerability Detection

Static AnalysisDynamic Testing

Detect HTML sensitive
content

Selenium implements
mock attacks

Page status monitoring

Analyze JavaScript script
data streamsDetect DOM

manipulation content in
JavaScript

Fig. 1. Model structure flow chart

3.2 Static Analysis
The purpose of static analysis technology is to complete the analysis of web page source
code. The source code of the analyzed web page includes HTML content and script content
such as JavaScript. This section will describe the static analysis process, give the static
analysis of vulnerability detection criteria and feature expression construction process, and
describe the source code script analysis process.

3.2.1 Static Analysis of Vulnerability Detection Standards

Static analysis completes the identification of malignant content in the HTML source
code by utilizing the feature expression “FE.” The content matched by “FE” is the
vulnerability in the HTML code, and the details of the vulnerability, such as the “ICN,”
will be output.

3.2.2 Feature Expressions Construction

The syntax of “FE” inherits the syntax of Regular Expressions. “FE” comprises
metacharacters, frequency characters, and content characters. Among them,
metacharacters and frequency characters inherit the syntax of Regular Expressions. The
content character, with {tag, attribute, event} as its outer content, {pseudo-protocol,
script} as its inner content, and {closed character, special symbol} as its supplementary
content is in common with the elements which are utilized to construct attack vectors.

1694 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

3.2.3 Script Analysis

For the dynamic content on the web page, this paper designs a “Variable Conversion”
method for data flow analysis. All variables, built-in functions, output functions, and
assignment operations in the script were tagged by the “Variable Conversion” method.
The objects tested during the script analysis are variable values, function arguments, and
the result of the “DocumentOP” operation. For objects with malicious content, their
location, value, and data flow will be output. If the variable passes its value to the HTML
tag, the details of the HTML tag would also be output.

3.3 Dynamic Testing

The purpose of dynamic testing technology is to simulate the website under attack to
measure the presence of vulnerabilities in the webpage. This section describes the dynamic
testing process. The vulnerability detection standard of dynamic testing and the construction
process of attack vectors are given.

3.3.1 Dynamic Detection Vulnerability Detection Standard

The dynamic testing method is implemented by Selenium. With the Selenium browser
drive, we could write programs simulating attacks and real-time monitor the status of a
web page. For example, monitoring the presence of an “Alert” object to determine
whether popover is triggered on the webpage. Further inspection of the properties of the
Alert object determines whether the attack vector injected into the page was executed
successfully. Thus, we can find out whether the web page has reflective XSS. The
presence of DOM-type XSS on the page is determined by taking the contents of the web
page path and the console output and using “FE” for malignancy detection. The steps of
“Stored-XSS” detection includes the detection steps of “reflected-XSS” vulnerability and
also verify the database content.

3.3.2 Attack Vectors Construction

The attack vector is the critical content of the simulation attack and the core tool of the
dynamic test method. According to the set succession relationship, six basic elements:
{tag, attribute, pseudo protocol, script, event, and closed character} will be utilized to
construct the attack vector. The inheritance relationships between base elements are
shown in Fig. 2. Seven deformation methods: {case confusion, character encoding,
blank character replacement, closed symbol replacement, popover closure coincidence
change, mark nesting, and adding special symbol} will be added to the attack vector to
enhance further its ability to evade the defense mechanism. The deformation features are
combined according to the set collocation mode and then added to the attack vector.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1695

ET

EA Ec

ED

ES

EC

EA

EDES

ES

EE

ES ED

ES

EE

ED

ES

EC

EA

EDES

ES

EE

ES ED

ES

ET

ES
Ec

ET

ES

ET

ES

Tree 1 Tree 2 Tree 3

ET => Tag element；
EE => Event element;
ES => Script element;
EA => Attribute element；
EC => Closed character element
ED => Pseudo agreement element;

Fig. 2. Attack vector basic element succession Figure

This method constructs attack vectors by Selenium dynamic manipulation of HTML
files. The specific flow chart is shown in Fig. 3.

Script Content

Build the .html files
related to the ď base

elementSĐ

HTML Content

Add attributes
dynamically

Add events
dynamically

Combine JavaScript
pseudo agreement
with page popover

Combine Script tag
with page popover

Output the
outerHTML

property

Attack
vectors

Add closed
characters

Attack
vectors

containing
closed

character

Adding
deformation

features

Attack
vectors

with
deformation

features

End

Fig. 3. Attack vector construction flow chart

3.4 Vulnerability Detection Process

Vulnerability detection is based on the source code of web pages, including HTML static
content and dynamic content of scripts. The specific detection steps are shown in Table
2.

1696 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

Table 2. Vulnerability Detection Procedures

Vulnerability detection model execution steps
Data pre-processing

 unified lowercase format
 decode the encoded content
 remove comments
 remove excess Spaces and tabs

Data content extraction
 input element extraction
 sensitive label extraction
 script extraction and variable content extraction

Vulnerability detection

Static
Analysis

While index < TagM.length do
AttrDe: detect attribute content.EventDe: detect event
content；
IF AttrDe || EventDe == True

Output the content of this row in the matrix.
Output tag’s ICN

While index < VariM.length do
ParaDe: detect the parameter of the output function
If ParaDe == True
 Output the detailed content of the function
VariDe: detect the value of the variable
If VariDe == True
 Output variable, variable value, variable location
Output the target that contains the contents of this variable,

including the tag’s outerHTML attribute、variable location

Dynamic
Testing

 load web pages or files with Selenium.
 Inject attack vectors to input elements.
 PageStatusContent: monitor the page's popover status, and match

the popover's content with the content of the attack vector.
EsContent: get the DocumentOP value with ES function

IF PageStatusContent || EsContent == True do
Output the content of the input element

4. Experiment

This chapter mainly states the experimental test results of the model. Firstly, the environment
configuration of the experiment is given, then the test results of each function of the model
and the comparative experimental results are presented.

4.1 Experimental Environment Configuration

The specific environment configuration for the test is shown in Table 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1697

Table 3. Test configuration table

Operating System Windows10

Central Processing Unit AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz

Development Language Python3.8

Development Kits JetBrains Pycharm 2019

Database MySQL

4.2 Experimental Test Results

This experimental section mainly presents the ability of the detection method to detect XSS
vulnerabilities. The detection tool for this article is named SMD. One of the experimental
subjects is a web page set containing elements for external input, and the other is two
vulnerability platforms -- DVWA and Pikachu. Among them, the former could set up
vulnerability defense mechanisms of different security levels, so it can effectively measure
the ability of attack vectors and indirectly reflect the vulnerability and security of web pages.
The experimental content of this paper will be described from two aspects: static analysis
and dynamic testing.

4.2.1 Static Analysis

The static analysis includes HTML code analysis and script code analysis. In the HTML
code analysis, the suspicious attributes and events would be captured, and malicious content
detection for the threatening content would be conducted. For labels with malicious content,
detailed information about the tag is displayed. The HTML code analysis results are shown
in Fig. 4.

Fig. 4. Static analysis of HTML content detection results

To analyze script contents, all variables, “DocumentOP,” built-in functions, output

functions, assignment operations, and value transfer operations were captured by the
“Variable Conversion” method, and the caught content was stored in the matrix “VariM”.
Then, we traverse the “VariM” matrix. Identify whether a function or assignment exists
threatening content and conduct malignancy detection for threatening content. Through this
step, we successfully discovered the threat and potentially malicious content in the script.
The detection effect is shown in Fig. 5.

1698 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

Fig. 5. Detection result of the static script analysis

4.2.2 Dynamic Testing

The attack vector is constructed by building HTML files with specific sensitive tags and
attributes and dynamically changing tag attributes and events according to various base
elements and inheritance relations. Finally, deformation content is added to the attack vector.
Seven sensitive tags, eight sensitive attributes, and three accessible triggering events are
utilized. The constructed attack vector is shown in Fig. 6.

Fig. 6. Attack vectors

After constructing the attack vector, the dynamic attack is conducted on the DVWA and

Pikachu platforms. Attack vectors could be injected into the platform with SMD. The web
page operation triggered by the attack vector and the content of the operation could be
successfully caught by SMD. The detection effect of “Stored-XSS” is shown in Fig. 7. The
detection effect of “Reflected-XSS” is shown in Fig. 8. The webpage URL, URL paths, and
other information could be output in real time by SDM. Also, it performs malignant
detection on these contents and outputs malignant URLs. The detection effect of “DOM-
XSS” is shown in Fig. 9. The webpage URL, URL path, and other information are obtained
in real-time and detected immediately through SMD. So the malignant URL which would
trigger “DOM-XSS” is detected successfully. The detection effect of “DOM-XSS” is shown
in Figure 9.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1699

Fig. 7. Stored-XSS detection effect

Fig. 8. Reflected-XSS detection effect

Fig. 9. DOM-XSS detection effect

Finally, SMD executes “DocumentOP,” the rest of the variable matrix, through the “ES”
function to detect the returned value. The detection results are shown in Fig. 10. Through
this step, the correlation between the dynamic test method and the static analysis method is
further improved, and the coverage of the static analysis method is also improved.

Fig. 10. Dynamic script content detection results

4.3 Comparative Experiment

The comparative work in this section includes the analysis of the advantages of the
proposed detection method over existing dynamic analysis models, and on this basis, the
actual detection capabilities of the models are compared.

1700 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

4.3.1 Method Advantage Analysis

At present, for the detection of XSS vulnerabilities, the dynamic analysis technology
carried out from the actual “black box” perspective is popular. Han[19] et al and Zhao[20] et
al used crawler technology and dynamic analysis technology respectively to conduct the
dynamic test on the existence of webpage XSS vulnerability(“Han” and “Zhao” represent
these models). Dynamic testing technology is an extremely effective means to detect XSS
vulnerabilities in Web pages. But for Reflected-XSS, malicious links exist on Web pages.
Stored-XSS is triggered by the page after the database contents are fetched under source
code execution. DOM-XSS is triggered directly within a web page after malicious content is
injected at the injection point. These characteristics are not the core goals of dynamic testing
technology, but they are the core work needed to complete the white-box analysis of source
code. Therefore, it is necessary to use static analysis technology before dynamic testing
technology in this paper, and it has the following advantages.

(1) effectively learn the source structure, such as the source data flow
(2) discover the malignant code in the source code
(3) reduce the preparation before the dynamic test
(4) make the detection work more complete
(5) improve the accuracy of web pages vulnerability detection
In addition, in terms of the implementation of dynamic testing technology, the

similarities and differences between SMD and Han and Zhao are shown in Table 4.

Table 4. The similarities and differences of realizing dynamic testing technology
Items Zhao Han SMD

Tools Selenium Selenium Selenium

Excavate injection point Yes Yes Yes

Injection point test method probe vector probe vector attack vector

Set the attack vector syntax Yes Yes Yes

Attack vector construction manual combination manual combination Selenium

Vulnerability detection mode inject attack vectors inject attack vectors inject attack vectors

Vulnerability identification
method

monitor webpage
state

monitor webpage
state

monitor the webpage
state and analyze the
return value of the

“ES” function
Vulnerability source code location No No Yes

Data flow analysis Yes No Yes

Table 4 shows the commonalities and differences in the implementation of dynamic

testing techniques between the proposed model SMD and Han and Zhao. Among them, SMD
has the advantages of source code vulnerability location and data flow analysis, which are
based on static analysis of source code. In addition, the Selenium tool was used to build the
attack vector according to the attack vector syntax, which effectively accelerated the
construction speed of the attack vector.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1701

4.3.2 Comparative Experimental Results

Firstly, we conduct the vulnerability detection of Zhao and SMD on Firing Range[21]
project. The result is shown in Fig. 11.

Fig. 11. XSS vulnerability detection comparison

Combined with the amount of XSS vulnerabilities shown in Fig. 11, the vulnerability

detection Precision and False Alarm Rate of the two models, Zhao and SMD, are shown in
Table 5. As can be seen from Table 5, the combination of static analysis technology in this
paper has indeed improved the accuracy of vulnerability detection.

Table 5. Precision and False Alarm Rate of the detection

Model Number of missed
reports

Number of false
alarm Precision False Alarm Rate

Zhao 6 2 91.30% 2.90%

SMD 4 1 94.20% 1.44%

Secondly, to further test the vulnerability detection capability of SMD, this article
compares it with Acuentix and ZAP, two standard vulnerability detection tools. Both are
widely used vulnerability detection tools. We test the web pages, from the XSSed[22]
website, with XSS vulnerabilities that are not yet fixed. The results are as follows:

Fig. 12. Comparative experimental results

30
16

2329
14

22
29

15
22

0

20

40

Reflected XSS Amount Stored XSS Amount DOM XSS Amount

Am
ou

nt

XSS vulnerability type

XSS vulnerabilities Amount on "Firing Range" project

Actual Amount Zhao SMD

10

0

8.17

1 1 0.45
5

0
2.96

0
5

10
15

sink amount xss vulnerability amount time-consuming(min)

webcenters.netscape.compuserve.com/ page
detection effect

Acuentix SMD ZAP

1702 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

Fig. 12 shows the results of SMD and two tools detecting a web page. Among them,
Less threatening spots were identified by SMD. This is because the tools scan for threat
content by fully traversing all links under the site in depth. The SMD model needs to
improve the traversal ability of URL links. On the other hand, the vulnerability in the
detected web page is that the alert operation outputs “cookie” information. Because Acuentix
and ZAP are used to detect and scan vulnerabilities from a completely black-box perspective,
they cannot find malignant content directly. SMD needs to increase the work of deep
traversal of URL links in web pages to further improve the comprehensiveness of
vulnerability analysis.

Finally, Wang[23] et al. adopted a novel perspective of vulnerability discovery based
on event listening, so we compared the detection effects between models on the DVWS
vulnerability platform. The target model is labeled “Wang”.

Table 6. Comparative experiments of different models

Target SMD Wang

attack vector construction
Six types of base elements and

seven types of deformation
characteristics

Attack vector classification
feature set and eight
deformation features

vulnerability detection scope stored, reflected, DOM reflected, DOM

code structure analysis yes no

amount of vulnerabilities 3 3

amount of decanting points 4 8

Table 6 shows the detection effects of the two detection models under some indicators.

The two models adopt similar ideas to design the construction method of the attack vector.
However, the vulnerability detection scope of the SMD model is broader. In addition, SMD
uses static analysis to analyze the web source code. Therefore, SMD further improves the
comprehensiveness of vulnerability analysis.

5. Conclusion

To ensure the security of the power communication networks. For the cross-site scripting
vulnerability in the power grid and the potential security problems of the source code,
this paper proposes a cross-site scripting vulnerability detection method from the
perspectives of white box and black box attacks, combining the static analysis method
and the dynamic testing method to deal with the two types of attacks. The experiments
show that the static analysis method can effectively analyze the source code content and
detect the malignant content in the code. The dynamic test method could effectively
verify the possible degree of web page trigger attack and excavates the injection point
information of cross-site scripting vulnerability. The proposed dynamic and static
analysis methods have good coverage and accuracy in identifying vulnerabilities.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1703

References
[1] I. Hydara et al., “Current state of research on cross-site scripting (XSS) – A systematic literature

review,” Information and Software Technology, vol. 58, 170–186, pp.177-179, Feb. 2015.
Article (CrossRef Link)

[2] http://www.owasp.org.cn/OWASP-CHINA/owasp-project/2021-owasp-top-10/
[3] W. Sun, K. -Y. Zhang, L. -F. Xue, et al., “Overview of XSS vulnerability research,” Information

Security Research, vol. 2, no. 12, pp. 1068-1079, Feb. 2016.
[4] L. K. Shar, H. B. K. Tan, “Automated removal of cross site scripting vulnerabilities in web

applications,” Information and Software Technology, vol. 54, no. 5, pp. 467-478, May. 2012.
Article (CrossRef Link)

[5] Z. -Y. Wan and B. Zhou, “Input verification vulnerability detection method based on Static
Information Flow Tracking,” Journal of Zhejiang University (Engineering Science), vol. 49, no.
4, pp. 683-691, Apr. 2015.

[6] H. Choi, S. Hong, S. Cho and Y. -G. Kim, “HXD: Hybrid XSS detection by using a headless
browser,” in Proc. of 2017 4th International Conference on Computer Applications and
Information Processing Technology (CAIPT), pp. 1-4, Aug. 2017. Article (CrossRef Link)

[7] C. Li, Y. Wang, C. Miao, et al., “Cross-site scripting guardian: A static XSS detector based on
data stream input-output association mining,” Applied Sciences, vol. 10, no. 14, p. 4740, July.
2020. Article (CrossRef Link)

[8] S. Wen, P. Luo, X. Xu et al., “XSS Attack Defense Detection based on Machine learning
modeling,” Communications Technology, vol. 55, no. 3, pp. 351-358, Mar. 2022.
Article (CrossRef Link)

[9] S. Rathore, P. K. Sharma, and J. H. Park, “XSSClassifier: An Efficient XSS Attack Detection
Approach Based on Machine Learning Classifier on SNSs,” J Inf Process Syst, vol. 13, no. 4, pp.
1014-1028, Aug. 2017. Article (CrossRef Link)

[10] Yao Wang, Wandong Cai, Pin Lyu, Wei Shao, “A combined static and dynamic analysis approach
to detect malicious browser extensions,” Security and Communication Networks, vol. 2018, May.
2018. Article (CrossRef Link)

[11] I. Tariq, M. A. Sindhu, R. A. Abbasi, A. S. Khattak, O. Maqbool, and G. F. Siddiqui, “Resolving
cross-site scripting attacks through genetic algorithm and reinforcement learning,” Expert
Systems with Applications, vol. 168, Apr. 2021. Article (CrossRef Link)

[12] Y. Zhou and P. Wang, “An ensemble learning approach for XSS attack detection with domain
knowledge and threat intelligence,” Computers & Security, vol. 82, pp. 261–269, May. 2019.
Article (CrossRef Link)

[13] J. -T. Gu and Y. Xin, “XSS vulnerability detection model based on dynamic analysis,” Computer
Engineering, vol. 44, no. 10, pp. 34-41, Nov. 2018. Article (CrossRef Link)

[14] X. -Y. Hou, X. -L Zhao, M. -J. Wu, et al., “A dynamic detection technique for XSS
vulnerabilities,” in Proc. of 2018 4th Annual International Conference on Network and
Information Systems for Computers (ICNISC), IEEE, pp. 34-43, Sept. 2018.
Article (CrossRef Link)

[15] C. Cheng, Y. -H. Zhou, “XSS Vulnerability Mining Based on Fuzzy Testing and Genetic
Algorithm,” Computer Science, vol. 43, no. Z6, pp. 328-331, June. 2016.
Article (CrossRef Link)

[16] Z. Liu, Y. Fang, C. Huang, et al., “GAXSS: Effective Payload Generation Method to Detect XSS
Vulnerabilities Based on Genetic Algorithm,” Security and Communication Networks, vol. 2022,
pp. 3-8, Feb. 2022, Article (CrossRef Link)

[17] Gupta C, Singh R K, Mohapatra A K, “GeneMiner: a classification approach for detection of
XSS attacks on web services,” Computational Intelligence and Neuroscience, vol. 2022, pp. 2-6,
May. 2022. Article (CrossRef Link)

[18] Y. Qing, “Research on Attack Vector in XSS Detection,” Southeast University, no. 5, pp. 23-28,
Apr. 2018.

http://dx.doi.org/10.1016/j.infsof.2014.07.010
http://dx.doi.org/10.1016/j.infsof.2014.07.010
http://www.owasp.org.cn/OWASP-CHINA/owasp-project/2021-owasp-top-10/
http://doi.org/doi:10.1016/j.infsof.2011.12.006
http://doi.org/doi:10.1109/CAIPT.2017.8320672
https://doi.org/10.3390/app10144740
http://doi.org/doi:10.3969/j.issn.1002-0802.2022.03.013
https://doi.org/10.3745/JIPS.03.0079
https://doi.org/10.1155/2018/7087239
https://doi.org/10.1016/j.eswa.2020.114386
https://doi.org/10.1016/j.cose.2018.12.016
http://doi.org/doi:10.19678/j.issn.1000-3428.0051222
http://doi.org/doi:10.1109/ICNISC.2018.00016
http://doi.org/doi:10.11896/j.issn.1002-137X.2016.6A.078
http://doi.org/doi:10.1155/2022/2031924
https://doi.org/10.1155/2022/3675821

1704 Chen et al.: A Source Code Cross-site Scripting Vulnerability Detection Method

[19] Y. -Y. Han, Y. -R. He, P. -H. Liu, et al., “Design and implementation of XSS vulnerability
detection tool based on crawler,” Journal of Beijing Institute of Electronic Science and
Technology, vol. 27, no. 1, pp.7-16, Mar. 2019. Article (CrossRef Link)

[20] Y. -H. Zhao, D. -Y. Wu, “Analysis and Design of an XSS Vulnerability Detection System,”
Software Guide, vol. 18, no. 3, pp. 162-167, Jun. 2019.

[21] https://github.com/google/firing-range
[22] http://www.xssed.org/archive/special=1
[23] D. Wang, L. -J. Liu, J. -C. Lin, et al. “XSS Vulnerability detection based on DOM state

transition,” Journal of Beijing University of Technology, vol. 44, no. 9, pp. 1208-1216, June.
2018. Article (CrossRef Link)

Mu Chen, senior engineer, Director engineer of State Grid Smart Grid Research Institute
Co., LTD., head of terminal and access security technology, core backbone of State Grid
Corporation Network Security Key Laboratory, with CISP, CISSP, PMP and other
professional qualifications, is an authoritative expert in the field of mobile Internet security
of State Grid Corporation. As the project leader, independently undertook a number of State
Grid Corporation digitization and network security science and technology projects,
participated in a number of national projects, and was the leader of a number of State grid
Corporation information security key research and development projects.

 Lu Chen, female, master, senior engineer, graduated from Nanjing University of Posts
and Telecommunications, engaged in network security protection technology

Zhipeng Shao, received his Bachelor's degree in Information and Electronic Engineering
from Zhejiang University. Now he is a senior engineer, mainly engaged in the research of
power network security system architecture, key technologies and the research and
development of special safety protection equipment for power.

Zaojian Dai, male, master, graduated from Harbin Commercial University. He is currently
a senior engineer at the Power Grid Digitization Institute of State Grid Smart Grid Research
Institute Co., LTD. The research direction is terminal and access information security.

http://doi.org/doi:10.3969/j.issn.1672-464X.2019.01.003
https://github.com/google/firing-range
http://www.xssed.org/archive/special=1
http://doi.org/doi:10.11936/bjutxb2017060016

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023 1705

Nige Li, female, master, senior engineer, graduated from Nanjing Normal University,
majored in network security protection technology

Xingjie Huang, received his M.S. in Information Assurance from Northeastern
University, Boston, Massachusetts, USA, in 2016. In 2017, he started working at State Grid
Information & Telecommunication Branch. His area of expertise is cybersecurity, focusing
on topics such as cyber attack & defense, data security, cloud computing.

Qian Dang, senior engineer, engaged in network security attack and defense, mobile
security, industrial security, Internet security and other security technology research of the
power industry.

Xinjian Zhao, Master, graduated from the Department of Computer Science, School of
Information Science and Technology, Peking University. Lecturer of Information and
Communication Branch of State Grid Jiangsu Electric Power Co., LTD. And First Research
Institute of Ministry of Public Security.

