• Title/Summary/Keyword: Dynamic Monte Carlo

Search Result 218, Processing Time 0.023 seconds

Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State (다물체계의 평형위치에서 고유진동수에 대한 공차해석)

  • Eom, Seung-Man;Choi, Dong-Hwan;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.95-100
    • /
    • 2006
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the numerical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.

  • PDF

Dynamic Analysis of Fixed Offshore Structures Subjected to Random Waves (불규칙파에 대한 고정해양구조물의 동적해석)

  • Yun, Chung Bang;Choi, Jung Ho;Ryu, Jeong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.1-9
    • /
    • 1985
  • Two methods for the dynamic analysis of fixed offshore structures subjected to random waves are studied. They are the frequency domain method using the equivalent linearization of the nonlinear drag force, and the time domain method utilizing the Monte Carlo simulation technique for time series of random wave particle velocities and accelerations. Example analyses are carried out for two structures with different structural characteristics and for various wave conditions. A comparison has been made between the results obtained by two methods.

  • PDF

Stochastic Response of a Hinged-Clamped Beam (Hinged-clamped 보의 확률적 응답특성)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The response statistics of a hinged-clamped beam under broad-band random excitation is investigated. The random excitation is applied at the nodal point of the second mode. By using Galerkin's method the governing equation is reduced to a system of nonautonomous nonlinear ordinary differential equations. A method based upon the Markov vector approach is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The case of two mode interaction is considered in order to compare it with the case of three mode interaction. The analytical results for two and three mode interactions are also compared with results obtained by Monte Carlo simulation.

  • PDF

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.

A study on Conditions of Frequency Coordination for High Speed Radio Access Network in domestic 5㎓ Band (국내 5㎓ 대역 초고속 무선 접속망의 공유조건 연구)

  • 박진아;박승근;박덕규;오용선
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.247-252
    • /
    • 2000
  • In this paper, we discuss frequency allocation and sharing for high speed radio access network in domestic 5㎓ the band. In order to evaluate the possibility of frequency sharing between meterological radar and high speed radio access network we analyses radio interference of meterological radar by means of minimum coupling loss method and Monte Carlo simulation And simulations show that it is necessary to use DFS(Dynamic Frequency Selection) scheme for frequency sharing between meterological radar and high speed radio access network.

  • PDF

A Design Method for Dynamic Systems Considering Statistical Properties (동적 시스템의 통계적 특성을 고려한 설계방법론)

  • Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.373-382
    • /
    • 2008
  • A method to investigate the design variable tolerance effects on the variances of the response, the characteristics, and the performance of a mechanical system is presented in this paper. The Monte-Carlo method has been conventionally employed to achieve such goals. However, the Monte-Carlo method has some serious drawbacks related to the computation time and the consistent solution convergence. To resolve the drawbacks of the method, a method employing sensitivity information is proposed. Sensitivity equations for a mechanical system are obtained analytically by differentiating the multi-body formulation with respect to a design variable. By using the chain rule along with the sensitivity information, the variances of the response, the characteristics, and the performance of a dynamic system can be calculated.

  • PDF

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

A methodology for development of seismic fragility curves for URBM buildings

  • Balasubramanian, S.R.;Balaji, Rao K.;Meher, Prasad A.;Rupen, Goswami;Anoop, M.B.
    • Earthquakes and Structures
    • /
    • v.6 no.6
    • /
    • pp.611-625
    • /
    • 2014
  • This paper presents a simple methodology that integrates an improved storey shear modelling, Incremental Dynamic Analysis and Monte Carlo Simulation in order to carryout vulnerability analysis towards development of fragility curves for Unreinforced Brick Masonry buildings. The methodology is demonstrated by developing fragility curves of a single storey Unreinforced Brick Masonry building for which results of experiment under lateral load is available in the literature. In the study presented, both uncertainties in mechanical properties of masonry and uncertainties in the characteristics of earthquake ground motion are included. The research significance of the methodology proposed is that, it accommodates a new method of damage grade classification which is based on 'structural performance characteristics' instead of 'fixed limiting values'. The usefulness of such definition is discussed as against the existing practice.

Stick-slip vibration analysis by using statistical friction model and accuracy verification of the friction model (통계적 마찰 모델을 활용한 stick-slip 진동 해석과 정확성 검증)

  • Yoo, Hong Hee;Kang, Won Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.830-832
    • /
    • 2014
  • In this study, friction stick-slip vibration're interpretation of the phenomenon, we used a statistical model of friction. In a previous study using a definite friction factor, but to a dynamic simulation using a constantly changing during the integration time by a Monte Carlo simulation method, not the average coefficient of friction and the dynamic friction coefficient and a constant value in this study.

  • PDF

Tolerance Analysis for Natural Frequencies of Multi-body Systems in Dynamic Equilibrium State (다물체계의 평형위치에서 고유진동수에 대한 공차해석)

  • Eom, Seung-Man;Choi, Dong-Hwan;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.65-71
    • /
    • 2007
  • Tolerance analysis method for natural frequencies of multi-body systems having a equilibrium position is suggested in this paper. To perform the tolerance analysis, the Monte-Carlo Method is conventionally employed. However, the Monte-Carlo Method has some weakness; spending too much time for analysis and having a low accuracy and hard to converge in the dynamical unstable area. To resolve these problems, a tolerance analysis method is suggested in this paper. Sensitivity equations of natural frequencies are derived at the equilibrium position. By employing the sensitivity information of mass, damping and stiffness matrices, the sensitivity of natural frequencies can be calculated.