• 제목/요약/키워드: Dynamic Mechanical Analysis

검색결과 2,623건 처리시간 0.024초

고하중용 버킷 롤러체인 시스템의 다물체 동역학 해석 및 내구성 연구 (Study on Multibody Dynamic Analysis and Durability of Heavy Load Bucket Roller Chain System)

  • 김창욱;박진철;이동우;송정일
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.919-925
    • /
    • 2016
  • In this study, multibody dynamic and mechanical analyses were conducted for the structure of roller chain bucket elevator system. The fatigue life of the roller chain elevator system was determined under static and fatigue loadings. Results of multibody dynamic analysis suggested that the maximum contact force occurred at the drive sprocket engagement point with the roller chain due to maximum tension. Fatigue analysis results suggest that the high load roller chain system is durable and safe because its life time is more than 700,000 cycles, close to its designed value (1,000,000 cycle). However, the contact portion of plate and pin needed a safety factor. The dynamic analysis of the heavy load roller chain was conducted with a multibody dynamic analysis program. The results obtained in this study can be utilized for dynamic analysis of roller chain systems in all industries.

Acrylic Polyol 함량을 달리한 폴리우레탄 제품의 형태학적 열적 및 동적·기계적 성질 (Morphological, Thermal and Dynamic Mechanical Properties of Polyurethane Product with Various Contents of Acrylic Polyol)

  • 김태성;박찬영
    • Elastomers and Composites
    • /
    • 제48권4호
    • /
    • pp.276-281
    • /
    • 2013
  • acrylic polyol로 개질한 polyester형 polyurethane foam을 quasi prepolymer법으로 제조하였다. 열적 및 동적 기계적 성질은 thermal gravimetric analysis 및 dynamic mechanical analysis에 의하여 분석하였다. 또한 유리전이온도는 differential scanning calorimeter로 측정하였다. Acrylic polyol 함량이 증가함에 따라 TGA에 의해 측정한 열적 안정성은 약간 감소하였다. 그리고 acrylic polyol 함량이 증가함에 따라 저장 탄성률은 증가한 반면에 tan delta 값은 감소하였다.

Probabilistic dynamic analysis of truss structures

  • Chen, J.J.;Che, J.W.;Sun, H.A.;Ma, H.B.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.231-239
    • /
    • 2002
  • The problem of dynamic analysis of truss structures based on probability is studied in this paper. Considering the randomness of both physical parameters (elastic module and mass density) of structural materials and geometric dimension of bars respectively or simultaneously, the stiffness and mass matrixes of the elements and structure have been built. The structure dynamic characteristic based on probability is analyzed, and the expressions of numeral characteristics of inherence frequency random variable are derived from the Rayleigh's quotient. The method of structural dynamic analysis based on probability is developed. Finally, two examples are given.

Dynamic mechanical analysis of silicone rubber reinforced with multi-walled carbon nanotubes

  • Li, Rui;Sun, L.Z.
    • Interaction and multiscale mechanics
    • /
    • 제4권3호
    • /
    • pp.239-245
    • /
    • 2011
  • The dynamic mechanical behavior of silicone rubber reinforced with multi-walled carbon nanotubes (MWCNTs) has been investigated in this study. The MWCNT-reinforced nanocomposites are tested in compression mode through dynamic mechanical analysis (DMA). Multiple effects including MWCNT loading, testing frequency, dynamic strain amplitude, and pre-strain level are taken into consideration. Results show that, by adding 5 wt% of MWCNTs, the dynamic stiffness and damping coefficient of the silicone rubber are significantly enhanced. It is further observed that the dynamic mechanical properties of the nanocomposites are sensitive to dynamic strain amplitude but only slightly affected by pre-strains.

Dynamic response analysis of closed loop control system for intelligent truss structures based on probability

  • Gao, W.;Chen, J.J.;Ma, H.B.;Ma, X.S.;Cui, M.T.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.239-248
    • /
    • 2003
  • The dynamic response analysis of closed loop control system based on probability for the intelligent truss structures with random parameters is presented. The expressions of numerical characteristics of structural dynamic response of closed loop control system are derived by means of the mode superposition method, in which the randomness of physical parameters of structural materials, geometric dimensions of active bars and passive bars, applied loads and control forces are considered simultaneously. The influences of the randomness of them on structural dynamic response are inspected by several engineering examples and some significant conclusions are obtained.

방사선 열화에 따른 PEEK의 유전특성과 동적 기계적 특성 (Dielectric Analysis and Dynamic Mechanical Analysis of Radiation Degradation of PEEK)

  • 김기엽;강현구;류부형;이청;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.485-488
    • /
    • 2003
  • Radiation degradation of Poly(ether ether ketone) (PEEK) has been studied by dielectric analysis and dynamic mechanical analysis. It has been observed that dielectric properties are influenced by radiation degradation of PEEK. For radiation degradation of PEEK, dynamic mechanical properties were insensible.

  • PDF

차체판넬 스템핑공정의 동적 외연적해석과 동적해석에 미치는 영향인자 분석 (The dynamic explicit analysis of auto-body panel stamping process and investigating parameter affects of dynamic analysis)

  • 정동원
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.380-390
    • /
    • 1998
  • In the present work a finite element formulation using dynamic explicit time integration scheme is used for numerical analysis of auto-body panel stamping processes. The lumping scheme is employed for the diagonal mass matrix and linearizing dynamic formulation. A contact scheme is developed by combining the skew boundary condition and direct trial-and-error method. In this work, for economic analysis the faster punch velocity and the mass scaling method are introduced. To investigate the effects of punch velocity and mass scaling, the various values of punch velocity and the various mass scalings are used for numerical analysis. Computations are carried out for analysis of complicated auto-body panel stamping processes such as forming of an oil pan and a fuel tank.

Nonlinear dynamic stability and vibration analysis of sandwich FG-CNTRC shallow spherical shell

  • Kamran Foroutan;Akin Atas;Habib Ahmadi
    • Advances in nano research
    • /
    • 제17권2호
    • /
    • pp.95-107
    • /
    • 2024
  • In this article, the semi-analytical method was used to analyze the nonlinear dynamic stability and vibration analysis of sandwich shallow spherical shells (SSSS). The SSSS was considered as functionally graded carbon nanotube-reinforced composites (FG-CNTRC) with three new patterns of FG-CNTRC. The governing equation was obtained and discretized utilizing the Galerkin method by implementing the von Kármán-Donnell nonlinear strain-displacement relations. The nonlinear dynamic stability was analyzed by means of the fourth-order Runge-Kutta method. Then the Budiansky-Roth criterion was employed to obtain the critical load for the dynamic post-buckling. The approximate solution for the deflection was represented by suitable mode functions, which consisted of the three modes of transverse nonlinear oscillations, including one symmetrically and two asymmetrical mode shapes. The influences of various geometrical characteristics and material parameters were studied on the nonlinear dynamic stability and vibration response. The results showed that the order of layers had a significant influence on the amplitude of vibration and critical dynamic buckling load.

체결력에 따른 볼트결합부의 동적 파라미터 해석 (Dynamic Parameter Analysis of Bolted Joint)

  • 백성남;지태한;박영필
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.53-67
    • /
    • 1996
  • The dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this study, the test structures are constructed with two beams which are clamped by bolts, and a bolted joint which is modelled as a lumped stiffness element. To idientify the dynamic joint parameters with variance of clamping torque of bolts, the sensitivity analysis and the mode energy analysis methods are investigated experimentally. As a reult of these two methods, stiffnesses of bolted joint are experimentally found to increase as the clamping torque increases. These stiffnesses identified from the sensitivity analysis and the mode energy analysis method have some difference.