The spinal cord dose is the one of the limiting factor for the radiation treatment of the head & neck or the thorax region. It is not an easy task to maintain the spinal cord dose below tolerance and to keep the clinically acceptable dose to the PTV in this region. To overcome this problem, the spinal cord partial block technique (PBT) with the dynamic Multi-Leaf Collimator (dMLC) has been developed. This technique is an extension of the conventional treatment planning. In the beginning the beam directions are selected as same as the conventional treatment planning to encompass the PTV, then the partial block are designed to shield the spinal cord. The plan comparisons between the conventional therapy plan and the PTB plan were performed to evaluate the validity of this technique. The mean dose and the dose volume histogram (DVH) were used as the plan comparison indices. A series of quality assurance (QA) was performed to guarantee the reliable treatment. The QA consisted of the film dosimetry for the verification of the dose distribution and the point measurements. The PBT plan generated better results than the conventional treatment plan and it was proved to be useful for the H&N region.
The application of more complex radiotherapy techniques using multileaf collimation (MLC), such as 3D conformal radiation therapy and intensity-modulated radiation therapy (IMRT), has increased the significance of verifying leaf position and motion. Due to thier reliability and empirical robustness, quality assurance (QA) of MLC. However easy use and the ability to provide digital data of electronic portal imaging devices (EPIDs) have attracted attention to portal films as an alternatives to films for routine qualify assurance, despite concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In this study, we developed method for daily QA of MLC using electronic portal images (EPIs). EPID availability for routine QA was verified by comparing of the portal films, which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed two-test patterns of dynamic MLC were applied for image acquisition. Quantitative off-line analysis using an edge detection algorithm enhanced the verification procedure as well as on-line qualitative visual assessment. In conclusion, the availability of EPI was enough for daily QA of MLC leaf position with the accuracy of portal films.
Kim, Hojin;Kwak, Jungwon;Jeong, Chiyoung;Cho, Byungchul
Progress in Medical Physics
/
v.28
no.3
/
pp.122-128
/
2017
Eclipse Scripting Application Programming Interface (ESAPI) was devised to enhance the efficiency in such treatment related workflows as contouring, treatment planning, plan quality measure, and data-mining by communicating with the treatment planning system (TPS). It is provided in the form of C# programming based toolbox, which could be modified to fit into the clinical applications. The Scripting program, however, does not offer all potential functionalities that the users intend to develop. The shortcomings can be overcome by combining the Scripting programming with user-executable program on Windows or Linux. The executed program has greater freedom in implementation, which could strengthen the ability and availability of the Scripting on the clinical applications. This work shows the use of the Scripting programming throughout the simple modification of the given toolbox. Besides, it presents the implementation of combining both Scripting and user-executed programming based on MATLAB, applied to automated dynamic MLC wedge and FIF treatment planning procedure for promoting the planning efficiency.
The two commonly used methods in delivering intensity modulated radiation therapy (IMRT) plan are the dynamic (sliding window) and static (stop and shoot) mode. In this study, the two IMRI delivery techniques are compared by measuring point dose and dose distributions. Using treatment planning system, clinical target volume (CTV) was created as a sphere with various diameter (3 cm, 7 cm, 12 cm). Two IMRT plans were peformed to deliver 200 cGy to the CTV in dynamic and static mode. The two plans were delivered on a phantom and central point dose and dose distributions were measured. The central point dose differences between static and dynamic IMRT delivery were 0.2%, 0.2% and 0.4% when the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. The differences In volume receiving 90% of the proscribed dose were 2.7%, 2.2%, and 2.9% for the diameter of CTV was 3 cm, 7 cm, and 12 cm, respectively. For lung cancer patients, the differences in central point dose were 0.2%, 0.2%, and 0.4% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. The differences in volume receiving 90% of the prescribed dose were 2.7%, 4.8%, and 9.1% when the volume of CTV was 35.5 cc, 296.8 cc, and 903.5 cc, respectively. In conclusion, it was possible to deliver IMRT plans using dynamic mode of MLC operation although the loaves are In motion during radiation delivery.
Proceedings of the Korean Society of Medical Physics Conference
/
2002.09a
/
pp.129-132
/
2002
The practical virtual compensator, which uses a dynamic multi-leaf collimator (dMLC) and three-dimensional radiation therapy planning (3D RTP) system, was designed. And the feasibility study of the virtual compensator was done to verify that the virtual compensator acts a role as the replacement of the physical compensator. Design procedure consists of three steps. The first step is to generate the isodose distributions from the 3D RTP system (Render Plan, Elekta). Then isodose line pattern was used as the compensator pattern. Pre-determined compensating ratio was applied to generate the fluence map for the compensator design. The second step is to generate the leaf sequence file with Ma's algorithm in the respect of optimum MU-efficiency. All the procedure was done with home-made software. The last step is the QA procedure which performs the comparison of the dose distributions which are produced from the irradiation with the virtual compensator and from the calculation by 3D RTP. In this study, a phantom was fabricated for the verification of properness of the designed compensator. It is consisted of the styrofoam part which mimics irregular shaped contour or the missing tissues and the mini water phantom. Inhomogeneous dose distribution due to the styrofoam missing tissue could be calculated with the RTP system. The film dosimetry in the phantom with and without the compensator showed significant improvement of the dose distributions. The virtual compensator designed in this study was proved to be a replacement of the physical compensator in the practical point of view.
Baek Geum Mun;Kim Dae Sup;Park Kwang Ho;Kim Chung Man
The Journal of Korean Society for Radiation Therapy
/
v.15
no.1
/
pp.41-52
/
2003
I. Purpose The dose distribution in normal tissues and target lesions is very important in the treatment planning. To make the uniform dose distribution in target lesions, many methods has been used. Especially in the head and neck, the dose inhomogeneity at the skin surface should be corrected. Conventional methods have a limitation in delivering the enough doses to the planning target volume (PTV) with minimized dose to the parotid gland and spinal cord. In this study, we investigated the feasibility and the practical QA methods of the forward IMRT. II. Material and Methods The treatment plan of the forward IMRT with the partial block technique using the dynamic multi-leaf collimator (dMLC) for the patients with the nasopharyngeal cancer was verified using the dose volume histogram (DVH). The films and pinpoint chamber were used for the accurate dose verification. III. Results As a result of verifying the DVH for the 2-D treatment plan with the forward IMRT, the dose to the both parotid gland and spinal cord were reduced. So the forward IMRT could save the normal tissues and optimize the treatment. Forward IMRT can use the 3-D treatment planning system and easily assure the quality, so it is easily accessible comparing with inverse IMRT IV. Conclusion The forward IMRT could make the uniform dose in the PTV while maintaining under the tolerance dose in the normal tissues comparing with the 2-D treatment.
Lee, Soon Sung;Choi, Sang Hyoun;Min, Chul Kee;Kim, Woo Chul;Ji, Young Hoon;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Kim, Kum Bae
Progress in Medical Physics
/
v.26
no.3
/
pp.168-177
/
2015
For evaluating the treatment planning accurately, the quality assurance for treatment planning is recommended when patients were treated with IMRT which is complex and delicate. To realize this purpose, treatment plan quality assurance software can be used to verify the delivered dose accurately before and after of treatment. The purpose of this study is to evaluate the accuracy of treatment plan quality assurance software for each IMRT plan according to MLC DLG (dosimetric leaf gap). Novalis Tx with a built-in HD120 MLC was used in this study to acquire the MLC dynalog file be imported in MobiusFx. To establish IMRT plan, Eclipse RTP system was used and target and organ structures (multi-target, mock prostate, mock head/neck, C-shape case) were contoured in I'mRT phantom. To verify the difference of dose distribution according to DLG, MLC dynalog files were imported to MobiusFx software and changed the DLG (0.5, 0.7, 1.0, 1.3, 1.6 mm) values in MobiusFx. For evaluation dose, dose distribution was evaluated by using 3D gamma index for the gamma criteria 3% and distance to agreement 3 mm, and the point dose was acquired by using the CC13 ionization chamber in isocenter of I'mRT phantom. In the result for point dose, the mock head/neck and multi-target had difference about 4% and 3% in DLG 0.5 and 0.7 mm respectively, and the other DLGs had difference less than 3%. The gamma index passing-rate of mock head/neck were below 81% for PTV and cord, and multi-target were below 30% for center and superior target in DLGs 0.5, 0.7 mm, however, inferior target of multi-target case and parotid of mock head/neck case had 100.0% passing rate in all DLGs. The point dose of mock prostate showed difference below 3.0% in all DLGs, however, the passing rate of PTV were below 95% in 0.5, 0.7 mm DLGs, and the other DLGs were above 98%. The rectum and bladder had 100.0% passing rate in all DLGs. As the difference of point dose in C-shape were 3~9% except for 1.3 mm DLG, the passing rate of PTV in 1.0 1.3 mm were 96.7, 93.0% respectively. However, passing rate of the other DLGs were below 86% and core was 100.0% passing rate in all DLGs. In this study, we verified that the accuracy of treatment planning QA system can be affected by DLG values. For precise quality assurance for treatment technique using the MLC motion like IMRT and VMAT, we should use appropriate DLG value in linear accelerator and RTP system.
Kim, Chong Mi;Yun, In Ha;Hong, Dong Gi;Back, Geum Mun
The Journal of Korean Society for Radiation Therapy
/
v.26
no.2
/
pp.233-238
/
2014
Purpose : The Varian's Eclipse radiation treatment planning system is able to correct radiation treatment thought leaf gap which is limitation MLC movement for collision with both MLC. In this study, I'm try to analyze dosimetric effect about the leaf gap in treatment planning system. And then apply to clinical implement. Materials and Methods : The Elclipse version is 10.0. In general, the leaf gap set to 0.05~0.3 mm and must measurement each leaf gap. The leaf gap measured by each LINACs and photons. We applied to measured each leaf gap in IMRT and VMAT. Changing the leaf gap, we evaluated treatment plans by Dmax, CI, etc. Results : When the same plan was evaluated with changing the leaf gap, an increase of 2-5% over the value Dmax, CI increases mm to 0.0~0.50 mm leaf gap. Volumetric modulated and intensity modulated radiation therapy plans all showed the same trend was not found significant between each radiation treatment planning. Conclusion : Generally, the leaf gap setting has a unique measure of the Multileaf collimator. However, the aging of the Multileaf collimator, calibration, and can be changed, after inspection and repair of the lip gap should eventually because these values affect the treatment plan must be applied to the treatment after confirmation. In some cases, may be to maintain the initial setting value of the lip gap, which is undesirable because it can override the influence on the treatment plan.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.