• Title/Summary/Keyword: Dynamic Load Rating

Search Result 36, Processing Time 0.027 seconds

Evaluation for Lifetime and Thermal Ratings for Aged Overhead Transmission Lines (노후 가공송전선의 수명과 열용량의 평가)

  • Kim, Sung-Duck
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Thermal rating or lifetime evaluation for aged overhead transmission line becomes more important concerns with respect to keeping power delivery stable having proper capability. Both load rating and dip/clearance are essential factors to determine transmission capacity. In order to evaluate thermal rating and conductor lifetime for domestic transmission lines with double-circuit, the dip/ground clearance standards as well as the electrical equipment technical standard are examined. Conductor temperature and dip are calculated under the assumption of a contingency, and then, a method to up-rate load capacity is searched. As thermal rating and limit dip for aged conductor are properly evaluated, an improved strategy in order to guarantee the existing power system reliability is presented in this paper.

Application and Evaluation of Emergency Rates in Overhead Transmission Lines (가공송전선로의 비상용량 응용과 평가)

  • Kim, Sung Duck
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.442-446
    • /
    • 2014
  • A method for applying emergency ratings to improve the reliability of power supply in ACSR overhead transmission lines is described in this paper. Due to re-regulate power industry, most power companies worldwide as well KEPCO have been searching for only economical strategies without new investment. Power demand was rapidly increasing, however, generation amount did not follow sufficiently. Hence in order to increase the transmission capacity for the existing transmission lines in case of peak load, or contingency in transmission lines, an application method of emergency ratings such as short or long term rating is proposed. If applying long term emergency rating instead of static line rating for the period of a peak load, power transmission can be increased to 10 % or more. Furthermore, it was shown that emergency rating can be effectively used in the contingency of double-circuit transmission lines and/or overload cases.

Study on Evaluation of Energy Efficiency Rating of the Buildings (건축물의 에너지효율등급 평가에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • Since 2010, enhancement of the building energy efficiency and certification system and public office building should have been acquiring the first grade of Building Energy Efficiency. The Building Energy Efficiency Rating evaluation tool and Dynamic Analysis Energy simulation program for Building Energy Efficiency are widely used. The suitability to those programs have been discussed as a variety of programs have been used accordingly. In this study, evaluated the characteristic of Building Energy Efficiency Rating tool(ECO2) of the business building. At a result, the variables on the Weather Data, building Profile and building Load property in hourly between those Building Energy Efficiency evaluation tools have different.

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.

A An Experimental Study for Load Capacity and Dip Characteristic in Overhead Transmission Lines (가공송전선의 부하용량과 이도 특성에 관한 실험적 연구)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.177-183
    • /
    • 2010
  • Overhead transmission lines in domestic area have been built by several different design standards of dip and ground clearance. This paper describes an experimental study for evaluating load capacity and dip margin in overhead transmission lines. Such design standards for selection of overhead transmission conductors, dip and ground clearance, as well as electrical equipment technical standard are discussed. Based on daily load and weather data, several characteristics such as line utilization factor, load factor, conductor temperature and dip, etc. are analyzed, and compared with the specified levels of design standards. As a result, it is verified that DLR method can be a clue of the solving of the problem, for occurring in old transmission conductors which may be rarely operating below standards.

Planet Bearing Design of Slewing Planetary Gearbox (선회용 유성 기어박스의 유성기어 베어링 설계)

  • Park, Young-Jun;Lee, Geun-Ho;Song, Jin-Seop;Nam, Yong-Yun;Park, Sung-Ha
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.316-323
    • /
    • 2012
  • In order to meet the service life of planetary gearbox, a planet bearing, well known as the component with the highest failure rate, is designed. To predict the bearing fatigue life, ISO standard(ISO/TS 16281) is used, and the design parameters of the bearing are optimized using a parametric method. The whole planetary gearbox model is developed using a commercial software to calculate loads acting on planet bearings accurately. The results state that the designed bearings are satisfied with the life of 15,000hours, and the bearings that consist of 22rollers of 58mm have 1.6times longer life and better load sharing relatively than 22rollers of 28.5mm. Also, the increase in preload of taper roller bearings on the output pinion shaft prolongs the life of planet bearings regardless of roller's length.

Study on Effective Case Depth for Case Hardened Rolling Bearings (탄소 표면경화처리 구름베어링의 유효 경화 깊이에 대한 고찰)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • The effective case depth for case-hardened rolling bearing has been discussed. For this purpose, rolling contact fatigue tests for ball bearings built with inner race of various hardness values were conducted until L10 calculating rating life using a bearing life test machine under radial loading. Then, the distribution of residual stress below the inner raceway, which depended on the hardness value, was measured by X-ray diffraction. As a result, the linear relationship was established between the hardness value of the inner race and the theoretical shear stress evaluated at the depth where the residual stress disappeared below the inner raceway. Based on the relationship, it could be found that the factor of safety in bearing manufacturer’s rules for the effective case depth of case hardened rolling bearings was set higher. However, it could be also found that the hardness values at the depth where the maximum shearing stress acted below the raceway surface in a tapered roller bearing hardened by the carburizing process, were not sufficient for preventing plastic deformation under the basic dynamic load rating. Consequently, further efforts were still required to reduce or to disperse the contact load on the material design of a rolling bearing in order to prolong its life.

Assessment of a concrete arch bridge using static and dynamic load tests

  • Caglayan, B. Ozden;Ozakgul, Kadir;Tezer, Ovunc
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Assessment of a monumental concrete arch bridge with a total length of 210 meters having three major spans of 30 meters and a height of 65 meters, which is located in an earthquake-prone region in southern part of the country is presented in this study. Three-dimensional finite element model of the bridge was generated using a commercially available general finite element analysis software and based on the outcomes of a series of in-depth acceleration measurements that were conducted on-site, the model was refined. By using the structural parameters obtained from the dynamic and the static tests, calibrated model of the bridge structure was obtained and this model was used for necessary calculations regarding structural assessment and evaluation.

Selection of Energy Conservation Measures for Building Energy Retrofit: a Comparison between Quasi-steady State and Dynamic Simulations in the Hands of Users

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: Quasi-steady state simulations have played a pivoting role to expand the user group of simulation to design engineers and architects in Korea. Initially they are introduced in the market as a building energy performance rating tool. In domestic practice, however, quasi-steady state simulations seem to be regarded as a de facto simulation only available for energy retrofit. Selection of ECMs and economic feasibility analysis are being decided through these tools, which implies that running these tools has become a norm step of the Investment-grade Audit. Method: This study aims at identifying issues and problems with the current practice via test cases, analyzing the reasons and opportunities, and then eventually suggesting proper uses of quasi-steady state and dynamic simulations. Result: The functionality of quasi-steady state simulations is more optimized to the rating. If they are to used for energy retrofits, their off-the-shelf functions also need to be expanded for customization and detailed reports. Yet their roles may be limited only to the go/no go decision; because their algorithms are still weak at precisely estimating energy and load savings that are required for making investment decisions compared to detailed simulations.

A Study on Power loading Experiment & Performance Analysis for Dynamic Transient Effect of a Turbo-shaft Engine with Free Power Turbine (분리 축 가스 터빈 엔진의 동역학적 천이 효과를 고려한 성능 해석 및 부하 인가 시험에 관한 연구)

  • Kim Gyoung-du;Yang Soo-seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.3
    • /
    • pp.17-26
    • /
    • 2004
  • In this paper, power transmission systems converts the shaft power of a Turbo-shaft Engine with Free Power Turbine into the generator power and be composed of a method being supplied in the thrust motor driving a propellers. Being used this, Gas turbine engine works to flat rating about 110 kw (147 shp) that the thrust motor be extremely supplied from the engine of 317shp. In this test equipment, the engine is installed with the flywheel being able to the damping function when happen to the varying load between gas turbine engine output-shaft and generator. Then if the flywheel of inertial moment be not considered, the generator and motor not get the required power from the engine for raising the load. Also it is certified that the engine works the abnormal operation. Hence the flywheel of inertial moment is determined the required range to do the performance analysis with the dynamic transient from the given and tested engine data. This system is able to get the required power after a mounting test with the redesigned flywheel.