• 제목/요약/키워드: Dynamic Load Rating

검색결과 37건 처리시간 0.026초

Load rating of box girder bridges based on rapid testing using moving loads

  • Hong Zhou;Dong-Hui Yang;Ting-Hua Yi;Hong-Nan Li
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.371-382
    • /
    • 2023
  • Box girder bridges are now widely used in bridge construction, and it is necessary to perform load rating regularly to evaluate the load capacity of box girder bridges. Load testing is a common measure for load rating. However, the bridge must be loaded by many trucks under different loading conditions, which is time-consuming and laborious. To solve this problem, this paper proposes a load rating method for box girder bridges based on rapid moving loads testing. The method includes three steps. First, the quasi-influence factors of the bridge are obtained by crossing the bridge with rapidly moving loads, and the structural modal parameters are simultaneously obtained from the dynamic data to supplement. Second, an objective function is constructed, consisting of the quasi-influence factors at several measurement points and structural modal parameters. The finite element model for load rating is then updated based on the Rosenbrock method. Third, on this basis, a load rating method is proposed using the updated model. The load rating method proposed in this paper can considerably reduce the time duration of traditional static load testing and effectively utilize the dynamic and static properties of box girder bridges to obtain an accurate finite element model. The load capacity obtained based on the updated model can avoid the inconsistency of the evaluation results for the different structural members using the adjustment factors specified in codes.

전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템 (A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring))

  • 남석현;이수길;홍진영;김정년;정성환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

가공송전선의 송전용량을 증가시키기 위한 동적송전용량 시스템의 설계 (A Design for Dynamic Line Rating System to increase Overhead Transmission Line Capacities)

  • 김성덕
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.72-77
    • /
    • 2011
  • Dynamic Line Rating (DLR) techniques have been greatly worthy of notice for efficiently increasing transmission capacity as well as controlling load-flow in overhead transmission lines, in comparison with the existing power system operating with Static Line Rating (SLR). This paper describes an utilization method to implement DLR control system for old transmission lines built in the first stage using the ground clearance design standard with lower dips. The suggested DLR system is focused on designing as temperature control system rather than current/load control system. Based on several performance for conductor temperatures, it is shown that DLR system with efficiency can be implemented.

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

Dynamic Thermal Rating of Overhead Transmission Lines Based on GRAPES Numerical Weather Forecast

  • Yan, Hongbo;Wang, Yanling;Zhou, Xiaofeng;Liang, Likai;Yin, Zhijun;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.724-736
    • /
    • 2019
  • Dynamic thermal rating technology can effectively improve the thermal load capacity of transmission lines. However, its availability is limited by the quantity and high cost of the hardware facilities. This paper proposes a new dynamic thermal rating technology based on global/regional assimilation and prediction system (GRAPES) and geographic information system (GIS). The paper will also explore the method of obtaining any point meteorological data along the transmission line by using GRAPES and GIS, and provide the strategy of extracting and decoding meteorological data. In this paper, the accuracy of numerical weather prediction was verified from the perspective of time and space. Also, the 750-kV transmission line in Shaanxi Province is considered as an example to analyze. The results of the study indicate that dynamic thermal rating based on GRAPES and GIS can fully excavate the line power potential without additional cost on hardware, which saves a lot of investment.

교량의 과하중 확률계산을 통한 상태평가 등급 산정방법에 대한 연구 (A Study on the Evaluation Methods from Probability Computation of Bridge)

  • 김두환;유창욱
    • 한국안전학회지
    • /
    • 제24권4호
    • /
    • pp.53-58
    • /
    • 2009
  • The importance of process for repair and reinforcement of the bridge is increasing because of the lack of the fatigue load and stress, a lowering of the bridge load carrying capacity owing to impact and oscillation, deterioration on cultivation periods of the bridge, etc. Typically the experimenter values the bridge load carrying capacity by the real rating factor and response modification factor in bridge load rating through static load test and dynamic load test. But the error occurred in reliability of response modification factor in bridge load rating according to experience of experimenter. so tests of connecting probability theory and valuation of the bridge recently. The study is to compute the real load carrying capacity of the bridge and the rating factor and response modification factor on grade of the bridge, and calculate the probability of over-loaded truck load from Weigh In Motion(WIM) Data in FORTRAN programming applying to Monte-Carlo Simulation. At the result of this study, it is acquired that the new grade is computed for the probability of over-loaded truck load and surface inspection. The A grade is over 1.95, B grade is $1.55{\sim}1.94$, C grade is $1.26{\sim}1.54$, D grade is $1.14{\sim}1.25$, E grade is under 1.13 of rating factor, respectively.

경량 베어링 수명 특성에 관한 연구 (A Study on the Life Characteristics of Lightweight Bearings)

  • 이충성;박종원;임신열;강보식
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.819-825
    • /
    • 2021
  • In the industry, the use of lightweight bearings is increasing to minimize motor power loss, and in particular, the application of next-generation systems such as robots and drones is increasing. Bearing manufacturers are producing lightweight bearings by changing the bearing material, but related researches is insufficient. In this paper, life test and structural analysis were performed for lightweight bearings, and shape parameters and scale parameters were derived based on the life test results. It was confirmed that the shape parameter was 2.52 and the scale parameter was 164 hours. As a result of calculating the dynamic load rating based on the B10 life, it was confirmed that the dynamic load rating of the lightweight bearing was 7% compared to the formula suggested by ISO 281. The reason is that the material of the retainer, which is a major failure part, is a polyamide 66 series that reacts sensitively to heat, so It is judged to show a lot of difference from the ISO 281 calculation formula.

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

반경방향과 모멘트하중 하에서의 깊은홈 볼베어링의 피로수명 평가 -동등가하중식 제안- (Prediction of the Fatigue Life of Deep Groove Ball Bearing under Radial and Moment Loads -Equivalent Dynamic Loads-)

  • 김완두;한동철
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1654-1663
    • /
    • 1994
  • Even if the ball bearing was conservatively designed considering the dynamic capacity and the rating life, sometimes the bearing was early failed on account of the misalignment and the lubricant contaminations etc. Misalignment was generated when bearing-shaft system transmitted large power and when the bearing was inadequately mounted. It was possible to predict the fatigue life of ball bearing under the misalignment considering the motions of ball, cage and raceway, and the factors of the effect on fatigue life. Misalignment affected on ball bearing as radial and moment load and the relationships between misalignment and moment were obtained. In this paper, the analysis of the load distributions between ball and raceway, and the prediction of fatigue life of deep groove ball bearing under radial and moment loads were carried out. And, the new formulation of equivalent dynamic load considering the effects of moment load was proposed.