• Title/Summary/Keyword: Dynamic Load Factor

Search Result 383, Processing Time 0.028 seconds

Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test (동적재하시험을 통한 PSC 거더교의 횡분배 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do;Park, Jae-Bong;Lee, Myoung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.60-68
    • /
    • 2017
  • Since the bridge is the main facility of the road that is the core of the civil infrastructure, the bridge is constructed to ensure stability and serviceability during the traffic use. In order to secure the safety of bridges, evaluating the integrity of bridges at present is an important task in the maintenance work of bridges. In general, to evaluate the load carrying capacity of bridges, it is possible to confirm the superimposed behavior and symmetric behavior of bridges by estimating the lateral load distribution factor of the bridges through vehicle loading tests. However, in order to measure the lateral load distribution factor of a commonly used bridge, a static loading test is performed. There is a difficulty in traffic control. Therefore, in this study, the static displacement component of the bridge measured in the dynamic loading test and the ambient vibration test was extracted by using empirical mode decomposition technique. The lateral load distribution was estimated using the extracted static displacement component and compared with the lateral load distribution factor measured in the static loading test.

Evaluation on dynamic stress intensity factor using strain gage method (스트레인게이지법을 이용한 동적응력확대계수 평가)

  • Lee, H.C.;Kim, D.H.;Kim, J.H.;Moon, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.304-309
    • /
    • 2000
  • Strain gage method is used to evaluate the mode I dynamic stress intensity factor of marging steel(18Ni) and titanium alloy(Ti-6A1-4V). To decide the best strain gage position on specimen, static fracture toughness test was performed. Then instrumented charpy impact test and dynamic tensile test was performed by using strain gage method for evlauating dynamic stress intensity factor. Strain gage signals on the crack tip region are used to calculate the stress intensity factors. It is found that strain gage method is more useful than method by using load which is obtained from impact tup to assess dynamic characteristics such as dynamic stress intensity factor.

  • PDF

A Study on the Evaluation Methods from Probability Computation of Bridge (교량의 과하중 확률계산을 통한 상태평가 등급 산정방법에 대한 연구)

  • Kim, Doo-Hwan;Yoo, Chang-Uk
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.53-58
    • /
    • 2009
  • The importance of process for repair and reinforcement of the bridge is increasing because of the lack of the fatigue load and stress, a lowering of the bridge load carrying capacity owing to impact and oscillation, deterioration on cultivation periods of the bridge, etc. Typically the experimenter values the bridge load carrying capacity by the real rating factor and response modification factor in bridge load rating through static load test and dynamic load test. But the error occurred in reliability of response modification factor in bridge load rating according to experience of experimenter. so tests of connecting probability theory and valuation of the bridge recently. The study is to compute the real load carrying capacity of the bridge and the rating factor and response modification factor on grade of the bridge, and calculate the probability of over-loaded truck load from Weigh In Motion(WIM) Data in FORTRAN programming applying to Monte-Carlo Simulation. At the result of this study, it is acquired that the new grade is computed for the probability of over-loaded truck load and surface inspection. The A grade is over 1.95, B grade is $1.55{\sim}1.94$, C grade is $1.26{\sim}1.54$, D grade is $1.14{\sim}1.25$, E grade is under 1.13 of rating factor, respectively.

Heating Power Consumption Comparison Study Between Static Insulation and Dynamic Insulation at KIER Twin Test Cell (동적 단열재를 적용한 건물에서의 에너지소비량 비교 분석)

  • Kang, Eun-Chul;Park, Yong-Dai;Lee, Euy-Joon;Yun, Tae-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.919-924
    • /
    • 2008
  • Power consumption in the building thermal load could be the sum of the building fabric conduction load, building ventilation convection load and other such as radiation loss load. Dynamic Breathing Building (DBB) is the state-of-the-art to improve the wall insulation and indoor air quality(IAQ) performance as making air flow through the wall. This heat recovery type DBB contributes the power consumption saving due to the improved dynamic U-value. KIER twin test cell with static insulation(SI) and dynamic insulation(DI) at KIER was developed to test building power consumption at the real outside conditions. Then, the actual results were compared with the theory to predict the power consumption at the KIER twin test cell and introduced the building new radiation loss factor $\alpha$ to explain the difference between the both the theory and the actual case. As the results, the power consumption at the breathing DI wall building could saved 10.8% at the 2ACH(Air change per hour) compared with conventional insulation. The building radiation loss factor $\alpha$ for this test condition to calibrate the actual test was 0.55 in the test condition.

  • PDF

Investigation of Impact Factor and Response Factor of Simply Supported Bridges due to Eccentric Moving Loads (이동하중의 편측재하에 따른 단순교의 충격계수 및 응답계수 변화 분석)

  • Hong, Sanghyun;Roh, Hwasung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.105-113
    • /
    • 2018
  • The proposed model to predict the bridge load carrying capacity uses the impact response spectrum. The spectrum is based on Euler-Bernoulli beam and the center of the bridge width for the moving load location. Therefore, it is necessary to investigate the eccentric moving load effects on the impact factor and response factor. For this, this study considers 10 m width and two-lane simply supported slab bridges and performs the moving load analysis to investigate the variations of peak impact factor and corresponding response factor. The numerical results show that the eccentric load increases both the static and dynamic displacements, but the impact factor is decreased since the incremental amount of static displacement is bigger than that of dynamic displacement. However, the difference of the impact factors between the center and eccentric loadings is small showing less than 0.5%p. In the response factor, the eccentric loading increases both the static and dynamic response factors, compared to the center loading. The difference of the response factor is only 0.18%p. It shows that the eccentric loading has very small effects on the response factor, thus the impact factor response spectrum which is generated based on the center moving load can be used to determine the response factor.

Effects of damping on the parametric instability behaviour of plates under localized edge loading (compression or tension)

  • Deolasi, P.J.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.229-244
    • /
    • 1995
  • The parametric instability behaviour of a plate subjected to localized in-plane compressive or tensile periodic edge loading is studied, considering the effects of damping into the system. Different edge loading cases have been considered. Damping has been introduced in the form of proportional damping. Dynamic instability behaviour under compressive or tensile periodic edge loading shows that the instability regions are influenced by the load band width and its location on the edge. The effects of damping on the instability regions show that there is a critical value of dynamic load factor beyond which the plate becomes dynamically unstable. The critical dynamic load factor increases as damping increases. Damping generally reduces the widths of the instability regions.

On the Dynamic Response of a Beam with Variable Section subject to Impact Load (충격하중(衝擊荷重)을 받는 변단면(變斷面)보의 동적(動的) 응답해석(應答解析))

  • K.S.,Choi;C.D.,Jang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 1984
  • As the first step to the dynamic stress analysis of structures, transient responses of a Timoshenko beam with variable section subject to impact load are analyzed. According to the various characteristics of impact load, time histories of the transient response of Timoshenko beam with general boundary conditions are obtained and compared with those of one degree of freedom system. Numerical solutions of the governing equations of motion are calculated by adopting the equivalent lumped-mass system and the finite difference method. It is found that the dynamic responses of Timshenko beam depend on the effect of concentration and location of impact load. As a result, increasing tendency of fluctuation in dynamic response, especially in bending moment, is found according to the increase of load concentration factor in time and space.

  • PDF

A study on structural integrity and dynamic characteristic of inertial load test equipment for performance test of railway vehicle propulsion control system (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1389-1394
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to it's application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and it's dynamic characteristic was evaluated the designed using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2. Also, the structural stability was proved by maximum dynamic displacement of 0.82mm.

  • PDF

Evaluation of dynamic increase factor in progressive collapse analysis of steel frame structures considering catenary action

  • Ferraioli, Massimiliano
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.253-269
    • /
    • 2019
  • This paper investigates the effects of the tensile catenary action on dynamic increase factor (DIF) in the nonlinear static analysis for progressive collapse of steel-frame buildings. Numerical analyses were performed to verify the accuracy of the empirical and analytical expressions proposed in the literature in cases where the catenary action is activated. For this purpose, nonlinear static and dynamic analyses of a series of steel moment frame buildings with a different number of spans and stories were carried out following the alternate path method. Different column removal scenarios were considered as separate load cases. The dynamic increase factor that approximately compensates for the dynamic effects in the nonlinear static analysis was selected so to match results from the nonlinear dynamic analysis. The study results showed that the many expressions in literature may not work in cases where the catenary stage is fully developed.

A Study on Dynamic Capacity Assessment of PSC Box Girder High Speed Railway Bridges Using Time Series Load (시계열하중을 이용한 PSC 박스 거더 고속철도교량의 동적성능 평가에 관한 연구)

  • Han, Sung Ho;Bang, Myung Seok;Lee, Woo Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.211-219
    • /
    • 2010
  • The design concept of high speed railway bridges is applied to a method for increasing the stiffness of existing bridge structures considering the impact factor by a static load. Generally, the process of structural design would be relied upon an advanced foreign technology. However, the dynamic amplification factor (DAF) and dynamic capacity assessment of high speed railway bridges may be conducted essentially a detailed estimation because the resonance phenomenon is affected by the long length (380 m) and high speed (300 km/h) moving of a high speed railway (Korea Train eXpress: KTX). Therefore, this study will be examined the dynamic capacity of the typical PSC Box Girder high speed railway bridge efficiently, and offered the basic information for the reasonable structural design. For this, the static analysis is conducted considering the load line diagram of KTX based upon existing references. In addition, the KTX moving load is transformed into the time series load considering various analytical variables. The time history analysis is assessed reasonable using the transformed time series load. At that time, analytical variables for calculating the time series load are considered loading node distance, time increment and KTX velocity variation etc. The dynamic capacity of the PSC Box Girder high speed railway bridge is examined based upon the FE analysis result systematically. The structural safety is assessed quantitatively in accordance with the related regulation of the inside and outside of the country.