• Title/Summary/Keyword: Dynamic Lifts

Search Result 16, Processing Time 0.025 seconds

Safety analysis and design of full balanced hoist vertical shiplifts

  • Liao, Lekang
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.311-327
    • /
    • 2014
  • The safety relating to leakage of water and pitch instability of ship chambers of the full balanced hoist vertical shiplifts has been the focus of adoption of the type of vertical shiplifts. This paper aims to remove the doubts through theoretical and engineering researches. The leakage and pitch stability of ship chambers of full balanced hoist vertical ship lifts are investigated on the basis of theoretical analysis and exploration of engineering measures. Regarding the issue of leakage of ship chambers, a mathematical model on leaking process is built and corresponding formula and coping measures are obtained which can be applied in control program of ship lifts by linking with monitoring. The concept of safety grade is put forward to seek the best technical and economic index and the corresponding technical measures are for different grades of ship lift is suggested. For the issue of pitch instability, a methodology of combining theoretical deduction and summary of achievements of design and operation of the type of the full balanced hoist shiplifts is adopted, and the formula for design about pitch stability of ship chambers is derived.

Electromyographic Analysis of Muscle Activity and Fatigue of the Paraspinal Muscles During a Repetitive Lifting Task (반복 들기 작업에 따른 허리주변 근육의 근활성도와 근피로도에 대한 근전도 분석)

  • Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.16 no.3
    • /
    • pp.16-23
    • /
    • 2009
  • The purpose of this study was to investigate the effects of a repetitive lifting task on the level of activation and median frequency of the paraspinal muscles, and to provide basic data of the maximal acceptable duration of the lifting task to avoid muscle fatigue. Ten healthy male subjects were recruited as participants and they repetitively (12 lifts/min) lifted a box ($46cm{\times}30cm{\times}30cm$, 15 kg) for 10 minutes. Electromyographic data (muscle activation and median frequency), heart rate, and Borg CR10 score were recorded at 1, 3, 5, 7, and 9 minutes after the lifting task. Electromyographic data was recorded from the elector spinalis, mutifidus, external oblique abdominis, and rectus abdominis for 1 minute. The results showed that as the repetitive lifting task progressed, the heart rate and Borg CR10 score significantly increased. In addition, activation of the muscles increased. The median frequency significantly decreased over time in the elector spinalis, mutifidus, and external oblique abdominis (right side), except for the external oblique abdominis (left side) and rectus abdominis. It is suggested that the median frequency recorded from a dynamic task is used to monitor muscle fatigue. Furthermore, the repetitive lifting task (15 kg, 12 lifts/min) should not continue for more than 3 minutes in order to avoid muscle fatigue.

  • PDF

Strategical Postures for Relieving EMG Amplitude Discrepancy on Bilateral Low Back Muscles and Total Low Back Muscle Fatigue while Lifting Asymmetric Load Dynamically (비대칭무게중심 물체의 동적 들기 작업시 좌.우 허리 근육의 EMG 진폭차이와 피로를 줄이기 위한 자세 연구)

  • Kim, Sun-Uk;Han, Seung-Jo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.103-109
    • /
    • 2012
  • The purpose of this paper is to suggest the strategical lifting postures able to alleviate imbalanced EMG amplitude leading to an increase in low back muscle fatigue while lifting asymmetric load dynamically. Eleven male subjects are required to lift symmetrically an external load with 15.8kg and load center of gravity (LCG) deviated 10cm to the right from the floor to the waist height at the speed of about 25cm/sec. The EMG amplitudes on bilateral low back muscles (Longissimus, Iliocostalis, and Multifidus) are recorded during 2sec and analyzed. Independent variables are trunk postures (No bending vs. Bending to the LCG) and feet placements (Parallel vs. Right foot in front of the other vs. Right foot behind the other). Dependent variables are EMG amplitude average on six muscles and the EMG amplitude difference between right and left muscle group. Results indicate the phenomenon showing an amplitude increase in the left muscle group is equal to an decrease in the right one is observed in dynamic as well as static lifts, bending the trunk to the LCG increases amplitude discrepancy more than no trunk bending, and the amplitude discrepancy in one foot ipsilateral to LCG in front of the other foot is lowest among other foot postures. As bilateral EMG amplitude discrepancy increases total low back muscle fatigue, the strategical combination of no trunk bending and one foot close to LCG in front of the other is recommended for preventing elevated incidence of low back pain (LBP).

Effects of Artificial Leg Length Discrepancies on the Dynamic Joint Angles of the Hip, Knee, and Ankle During Gait

  • Kim, Yong-Wook;Jo, Seung-Yeon;Byeon, Yeoung-In;Kwon, Ji-Ho;Im, Seok-Hee;Cheon, Su-Hyeon;Kim, Eun-Joo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • PURPOSE: This study examined the dynamic range of motion (ROM) of the hip, knee, and ankle joint when wearing different shoe sole lifts, as well as the limb asymmetry of the range according to the leg length discrepancy (LLD) during normal speed walking. METHODS: The participants were 40 healthy adults. A motion analysis system was used to collect kinematic ROM data. The participants had 40 markers attached to their lower extremities and were asked to walk on a 6 m walkway, under three different shoe lift conditions (without an insole, 1 cm insole, and 2 cm insole). Visual3D professional software was used to coordinate kinematic ROM data. RESULTS: Most of the ROM variables of the short limbs were similar under each insole lift condition (p>.05). In contrast, when wearing a shoe with a 2 cm insole lift, the long limbs showed significant increases in flexion and extension of the knee joint as well as; plantarflexion, dorsiflexion, pronation, eversion, and inversion of the ankle joint (p<.05). Of the shoes with the insole lifts, significant differences in all ROM variables were observed between the left and right knees, except for the knee internal rotation (p<.05). CONCLUSION: As the insole lift was increased, more ROM differences were observed between the left and right limbs, and the asymmetry of the bilateral lower limbs increased. Therefore, appropriate interventions for LLD are needed because an artificial mild LLD of less than 2.0 cm could lead to a range of musculoskeletal problems of the lower extremities, such as knee and ankle osteoarthritis.

Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo (중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.4 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • Background: To determine the influence of lifting speed and type on peak and cumulative back compressive force (BCF) and shoulder moment (SM) loads during symmetric lifting. Another aim of the study was to compare static and dynamic lifting models. Methods: Ten male participants performed a floor-to-shoulder, floor-to-waist, and waist-to-shoulder lift at three different speeds [slow (0.34 m/s), medium (0.44 m/s), and fast (0.64 m/s)], and with two different loads [light (2.25 kg) and heavy (9 kg)]. Two-dimensional kinematics and kinetics were determined. A three-way repeated measures analysis of variance was used to calculate peak and cumulative loading of BCF and SM for light and heavy loads. Results: Peak BCF was significantly different between slow and fast lifting speeds (p < 0.001), with a mean difference of 20% between fast and slow lifts. The cumulative loading of BCF and SM was significantly different between fast and slow lifting speeds (p < 0.001), with mean differences ${\geq}80%$. Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

Prediction of Peak Back Compressive Forces as a Function of Lifting Speed and Compressive Forces at Lift Origin and Destination - A Pilot Study

  • Greenland, Kasey O.;Merryweather, Andrew S.;Bloswick, Donald S.
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • Objectives: To determine the feasibility of predicting static and dynamic peak back-compressive forces based on (1) static back compressive force values at the lift origin and destination and (2) lifting speed. Methods: Ten male subjects performed symmetric mid-sagittal floor-to-shoulder, floor-to-waist, and waist-to-shoulder lifts at three different speeds (slow, medium, and fast), and with two different loads (light and heavy). Two-dimensional kinematics and kinetics were captured. Linear regression analyses were used to develop prediction equations, the amount of predictability, and significance for static and dynamic peak back-compressive forces based on a static origin and destination average (SODA) backcompressive force. Results: Static and dynamic peak back-compressive forces were highly predicted by the SODA, with R2 values ranging from 0.830 to 0.947. Slopes were significantly different between slow and fast lifting speeds (p < 0.05) for the dynamic peak prediction equations. The slope of the regression line for static prediction was significantly greater than one with a significant positive intercept value. Conclusion: SODA under-predict both static and dynamic peak back-compressive force values. Peak values are highly predictable and could be readily determined using back-compressive force assessments at the origin and destination of a lifting task. This could be valuable for enhancing job design and analysis in the workplace and for large-scale studies where a full analysis of each lifting task is not feasible.

Study on hydrodynamic performance of Heavier-than-water AUV with overlapping grid method

  • Li, Xiang;Zhao, Min;Zhao, Faming;Yuan, Qingqing;Ge, Tong
    • Ocean Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Hydrodynamic coefficients strongly affect the dynamic performance of autonomous underwater vehicles (AUVs). A novel kind of underwater vehicle (Heavier-than-water AUV) with higher density than water is presented, which is different from conventional ones. RANS method and overlapping grids are used to simulate the flow field around the vehicle. Lifts, drags and moments of different attack and drift angles in steady state are calculated. The hydrodynamic performances and how the forces change with the attitude are analyzed according to the flow field structure. The steady-state results using overlapping grid method are compared with those of software FLUENT and wind tunnel tests. The calculation results show that the overlapping grid method can well simulate the viscous flow field around the underwater vehicle. Overlapping grid skills have also been used to figure out the planar-motion-mechanism (PMM) problem of Heavier-than-water AUV and forecast its hydrodynamic performance, verifying its effectiveness in dealing with the dynamic problems, which would be quite helpful for design and control of Heavier-than-water AUV and other underwater vehicles.

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

A Study on the Characteristics of the Electronic EGR Valve for Gasoline Engine (가솔린엔진용 E-EGR 밸브 특성에 관한 연구)

  • Park, Cheol-Woong;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.127-133
    • /
    • 2008
  • Since the 1960's, exhaust gas recirculation(EGR) has been used effectively in spark ignition(SI) engines to control the exhaust emissions of the oxides of nitrogen(NOx). The most important requirements for the application of EGR systems to conventional SI engines are controllable flow rate and good dynamic response. In order to evaluate the characteristics of the electronic EGR valve, a test bench which is consisted of blower, heater, air flow meter and driving unit for electronic EGR valve was set up to simulate engine operating conditions. During the tests, the valve actuation parameters were controlled and the valve lifts and flow rates were measured to infer the characteristics of EGR valve. The results confirmed the capabilities of mathematical analysis and it seems that the correction for the valve lift and potentiometer output is necessary to achieve precise control of EGR rates.