• 제목/요약/키워드: Dynamic Learning Control

검색결과 353건 처리시간 0.029초

다층 신경 회로망을 이용한 굴삭기의 위치 제어 (The Position Control of Excavator's Attachment using Multi-layer Neural Network)

  • 서삼준;권대익;서호준;박귀태;김동식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.705-709
    • /
    • 1995
  • The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it was used as a commanded feedforward input generator. A PD feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the excavator as well as the PD feedback error. By using the BP network as a feedforward controller, no a priori knowledge on system dynamics is need. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbancen and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

Advanced Polynomial Neural Networks Architecture with New Adaptive Nodes

  • Oh, Sung-Kwun;Kim, Dong-Won;Park, Byoung-Jun;Hwang, Hyung-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.43-50
    • /
    • 2001
  • In this paper, we propose the design procedure of advance Polynomial Neural Networks(PNN) architecture for optimal model identification of complex and nonlinear system. The proposed PNN architecture is presented as the generic and advanced type. The essence of the design procedure dwells on the Group Method of Data Handling(GMDH). PNN is a flexible neural architecture whose structure is developed through learning. In particular, the number of layers of the PNN is not fixed in advance but is generated in a dynamic way. In this sense, PNN is a self-organizing network. With the aid of three representative numerical examples, compari-sons show that the proposed advanced PNN algorithm can produce the model with higher accuracy than previous other works. And performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF

LAMS와 외부 교육용 콘텐츠간의 통신 메커니즘의 설계 및 구현 (Design and Implementation of Communication Mechanism between External Educational Contents and LAMS)

  • 박찬;정석인;한철동;성동욱;유재수;유관희
    • 한국콘텐츠학회논문지
    • /
    • 제9권3호
    • /
    • pp.361-371
    • /
    • 2009
  • LAMS(learning activity management system)[1]는 웹 검색, 채팅, 포럼, 그룹화와 보드와 같은 학습활동을 효과적으로 설계하고 관리할 수 있는 유용한 도구 중의 하나이다. 비록 LAMS가 e-러닝 콘텐츠를 편리하게 제작할 수 있는 방법을 지원하기 위해 지속적으로 갱신되고 있지만, 플래시, 자바, 비쥬얼 C++ 등과 같은 외부 도구에 의해 만들어진 외부 교육용 콘텐츠(EEC: External Educational Contents)와 통신하기 위한 방법을 아직 제공하고 있지 않다. 웹 환경에서 작동되는 LAMS에서 교육용 콘텐츠로 사용되고 있는 비디오와 동적 콘텐츠 등과 같은 임의의 EEC를 LAMS DB에서 일관성 있게 관리해야 하나, 아직까지 EEC 정보를 LAMS DB에 저장하기 위한 기능 뿐만 아니라 LAMS DB로부터 EEC에 관한 정보를 접근할 수 있는 기능을 제공하고 있지 않다. 본 논문에서는 이러한 문제를 해결하기 위한 LAMS와 EEC와 통신할 수 있는 메카니즘을 제안한다. 특히 이 기법은 LAMS에서 불가능한 다양한 외부 교육용 학습 자료를 편리하게 관리할 수 있고, 또한 평가와 같은 목적으로 만들어진 외부 교육용 콘텐츠를 교육적으로 활용하여 다양한 통계 자료 생성을 가능하게 한다. 따라서 제안된 통신 메카니즘을 통하여 LAMS를 이용하는 교수자가 보다 더 다양한 교육용 콘텐츠를 제작 관리할 수 있다.

학습 기반의 동적 쓰레드 풀 기법을 적용한 웹 서버의 설계 및 구현 (Design and Implementation of a Web Server Using a Learning-based Dynamic Thread Pool Scheme)

  • 유서희;강동현;이권용;박성용
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권1호
    • /
    • pp.23-34
    • /
    • 2010
  • 네트워크의 발전에 따라 사용자들이 늘어나게 되면서 웹 서버들은 동시에 접속하는 다수 사용자의 서비스 요청을 처리할 수 있는 다중 쓰레드 기법을 활용하고 있다. 고정된 쓰레드 풀 기법은 고정적인 시스템 자원을 점유해야 하는 문제점이 있다. 반면에 동적으로 쓰레드 풀 기법인 워터마크 쓰레드 풀기법은 사용자의 요청량에 따라 쓰레드 수를 적절하게 조절하지만, 지정한 최대값을 넘는 요청량에 대해서는 응답이 제때에 이루이지지 않는 단점이 있다. 따라서 본 논문에서는 다양한 요청량이 존재하는 다중 쓰레드 환경의 서버 프로그래밍을 위한 학습 기반의 동적 쓰레드 풀 기법을 적용한 웹 서버를 제안한다. 제안하는 기법은 쓰레드 풀을 사용하는 웹 서버 중 아파치(Apache) worker 다중 처리 모듈(Multi processing Module)에 AR(Auto Regressive) 기법을 통해 다음 주기의 작업 요청량을 예측하고 사전에 쓰레드를 생성한다. 기존 기법과 달리, 일정주기의 증감 추세가 없는 작업 요청량에도 필요한 쓰레드의 수를 정확하게 설정하기 위해 최근접 이웃(K-Nearest Neighbor) 알고리즘을 사용하여 작업 요청량에 따른 쓰레드의 수를 사전에 학습한다. 필요한 쓰레드의 수를 설정하기 위해 사전에 학습 되어진 개체들과 비교하여 유사한 개체를 선택하여 예측된 작업 요청량에 따른 쓰레드의 수를 결정하고 쓰레드를 생성한다. 본 논문에서는 필요한 쓰레드의 수를 동적으로 변경함으로써 사용자 응답 시간을 빠르게 하고, 사용자의 요청량에 맞게 쓰레드 수를 관리함으로써 시스템 자원의 활용도를 높일 수 있다.

자율주행 제어를 위한 향상된 주변환경 인식 알고리즘 (Improved Environment Recognition Algorithms for Autonomous Vehicle Control)

  • 배인환;김영후;김태경;오민호;주현수;김슬기;신관준;윤선재;이채진;임용섭;최경호
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

ALM-FNN을 이용한 IPMSM 드라이브의 HIPI 제어기 (HIPI Controller of IPMSM Drive using ALM-FNN)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.57-66
    • /
    • 2009
  • 종래의 고정된 이득을 가진 PI 제어기는 지령속도, 부하변화 등과 같은 파라미터 변동에 대해서 매우 민감하다. IPMSM 드라이브의 정확한 속도제어는 비선형적인 전자기적 발생저항뿐만 아니라 회전자 속도와 권선저항사이의 비선형적 관계 때문에 복잡한 문제점이 있다. 따라서 광범위한 동작상태에서 최적 제어를 위해 PI 제어기의 이득값을 실시간으로 조절해야한다. 본 논문은 FNN과 ALM을 이용하여 IPMSM 드라이브의 HIPI 제어기를 제시한다. 제시된 제어기는 ANN을 이용하여 속도를 추정하고, 시스템 외란에 대해서 IPMSM 드라이브의 고성능 속도제어를 제시한다. PI 제어기의 이득값은 모든 동작상태에서 ALM-FNN에 의해 최적화 되어진다. 제시된 제어기는 다양한 동작상태에 대한 분석을 통해 타당성을 입증한다.

Real-time simulation and control of indoor air exchange volume based on Digital Twin Platform

  • Chia-Ying Lin;I-Chen Wu
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.637-644
    • /
    • 2024
  • Building Information Modeling (BIM) technology has been widely adopted in the construction industry. However, a challenge encountered in the operational phase is that building object data cannot be updated in real time. The concept of Digital Twin is to digitally simulate objects, environments, and processes in the real world, employing real-time monitoring, simulation, and prediction to achieve dynamic integration between the virtual and the real. This research considers an example related to indoor air quality for realizing the concept of Digital Twin and solving the problem that the digital twin platform cannot be updated in real time. In indoor air quality monitoring, the ventilation rate and the presence of occupants significantly affects carbon dioxide concentration. This study uses the indoor carbon dioxide concentration recommended by the Taiwan Environmental Protection Agency as a reference standard for air quality measurement, providing a solution to the aforementioned challenges. The research develops a digital twin platform using Unity, which seamlessly integrates BIM and IoT technology to realize and synchronize virtual and real environments. Deep learning techniques are applied to process camera images and real-time monitoring data from IoT sensors. The camera images are utilized to detect the entry and exit of individuals indoors, while monitoring data to understand environmental conditions. These data serve as a basis for calculating carbon dioxide concentration and determining the optimal indoor air exchange volume. This platform not only simulates the air quality of the environment but also aids space managers in decision-making to optimize indoor environments. It enables real-time monitoring and contributes to energy conservation.

A Vector-Controlled PMSM Drive with a Continually On-Line Learning Hybrid Neural-Network Model-Following Speed Controller

  • EI-Sousy Fayez F. M.
    • Journal of Power Electronics
    • /
    • 제5권2호
    • /
    • pp.129-141
    • /
    • 2005
  • A high-performance robust hybrid speed controller for a permanent-magnet synchronous motor (PMSM) drive with an on-line trained neural-network model-following controller (NNMFC) is proposed. The robust hybrid controller is a two-degrees-of-freedom (2DOF) integral plus proportional & rate feedback (I-PD) with neural-network model-following (NNMF) speed controller (2DOF I-PD NNMFC). The robust controller combines the merits of the 2DOF I-PD controller and the NNMF controller to regulate the speed of a PMSM drive. First, a systematic mathematical procedure is derived to calculate the parameters of the synchronous d-q axes PI current controllers and the 2DOF I-PD speed controller according to the required specifications for the PMSM drive system. Then, the resulting closed loop transfer function of the PMSM drive system including the current control loop is used as the reference model. In addition to the 200F I-PD controller, a neural-network model-following controller whose weights are trained on-line is designed to realize high dynamic performance in disturbance rejection and tracking characteristics. According to the model-following error between the outputs of the reference model and the PMSM drive system, the NNMFC generates an adaptive control signal which is added to the 2DOF I-PD speed controller output to attain robust model-following characteristics under different operating conditions regardless of parameter variations and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed 200F I-PD NNMF controller. The results confirm that the proposed 2DOF I-PO NNMF speed controller produces rapid, robust performance and accurate response to the reference model regardless of load disturbances or PMSM parameter variations.

유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구 (Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive)

  • 강성준;고재섭;최정식;장미금;백정우;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF