• Title/Summary/Keyword: Dynamic Learning Control

Search Result 353, Processing Time 0.032 seconds

Study of Adaptive Learning Control for Robot-Manipulator (로봇 매니퓰레이터의 적응학습제어에 관한 연구)

  • 최병현;국태용;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.396-400
    • /
    • 1996
  • It is prerequisite to apply dynamics controller to control robot manipulator required to perform fast and Precise motion. In this Paper, we Propose an adaptive 3earning control method for the dynamic control of a robot manipulator. The proposed control scheme is made up of PD controller in the feedback loop and the adaptive learning controller in the feedforward loop. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a SCARA robot and experimentally verified.

  • PDF

An iterative learning and adaptive control scheme for a class of uncertain systems

  • Kuc, Tae-Yong;Lee, Jin-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.963-968
    • /
    • 1990
  • An iterative learning control scheme for tracking control of a class of uncertain nonlinear systems is presented. By introducing a model reference adaptive controller in the learning control structure, it is possible to achieve zero tracking of unknown system even when the upperbound of uncertainty in system dynamics is not known apriori. The adaptive controller pull the state of the system to the state of reference model via control gain adaptation at each iteration, while the learning controller attracts the model state to the desired one by synthesizing a suitable control input along with iteration numbers. In the controller role transition from the adaptive to the learning controller takes place in gradually as learning proceeds. Another feature of this control scheme is that robustness to bounded input disturbances is guaranteed by the linear controller in the feedback loop of the learning control scheme. In addition, since the proposed controller does not require any knowledge of the dynamic parameters of the system, it is flexible under uncertain environments. With these facts, computational easiness makes the learning scheme more feasible. Computer simulation results for the dynamic control of a two-axis robot manipulator shows a good performance of the scheme in relatively high speed operation of trajectory tracking.

  • PDF

Indirect Adaptive Decentralized Learning Control based Error Wave Propagation of the Vertical Multiple Dynamic Systems (수직다물체시스템의 오차파형전달방식 간접적응형 분산학습제어)

  • Lee Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.211-217
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the teaming control field was teaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

Quality Assurance of Repeatability for the Vertical Multiple Dynamic Systems in Indirect Adaptive Decentralized Learning Control based Error wave Propagation (오차파형전달방식 간접적응형 분산학습제어 알고리즘을 적용한 수직다물체시스템의 반복정밀도 보증)

  • Lee Soo-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.2
    • /
    • pp.40-47
    • /
    • 2006
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work the authors presented an iterative precision of linear decentralized learning control based on p-integrated teaming method for the vertical dynamic multiple systems. This paper develops an indirect decentralized learning control based on adaptive control method. The original motivation of the loaming control field was learning in robots doing repetitive tasks such as on a]1 assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Error wave propagation method will show up in the numerical simulation for five-bar linkage as a vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link at each time step in repetition domain. Those can be helped to apply to the vertical multiple dynamic systems for precision quality assurance in the industrial robots and medical equipments.

  • PDF

The Application of Industrial Inspection of LED

  • Xi, Wang;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.91-93
    • /
    • 2009
  • In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of In this paper, we present the Q-learning method for adaptive traffic signal control on the basis of multi-agent technology. The structure is composed of sixphase agents and one intersection agent. Wireless communication network provides the possibility of the cooperation of agents. As one kind of reinforcement learning, Q-learning is adopted as the algorithm of the control mechanism, which can acquire optical control strategies from delayed reward; furthermore, we adopt dynamic learning method instead of static method, which is more practical. Simulation result indicates that it is more effective than traditional signal system.

  • PDF

Implementation and Permance Evaluation of RTOS-Based Dynamic Controller for Robot Manipulator (로봇 매니퓰레이터를 위한 RTOS 기반 동력학 제어기의 구현 및 성능평가)

  • 임동철;국태용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.716-719
    • /
    • 1999
  • In this paper, a real-time control system for robot manipulator is implemented using real-time operating system with capabilities of multitasking, intertask communication and synchronization, event-driven, priority-driven scheduling, real-time clock control, etc. The hardware system with VME bus and related devices is developed and applied to implement a dynamic learning control scheme for robot manipulator. Real-time performance of the proposed dynamic learning controller is tested for tasks of tracking moving objects and compared with the conventional servo controller.

  • PDF

Robust feedback error learning neural networks control of robot systems with guaranteed stability

  • Kim, Sung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.197-200
    • /
    • 1996
  • This paper considers feedback error learning neural networks for robot manipulator control. Feedback error learning proposed by Kawato [2,3,5] is a useful learning control scheme, if nonlinear subsystems (or basis functions) consisting of the robot dynamic equation are known exactly. However, in practice, unmodeled uncertainties and disturbances deteriorate the control performance. Hence, we presents a robust feedback error learning scheme which add robustifying control signal to overcome such effects. After the learning rule is derived, the stability is analyzed using Lyapunov method.

  • PDF

Implementation of an adaptive learning control algorithm for robot manipulators (로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

Design of Multi-Dynamic Neuro-Fuzzy Controller for Dynamic Systems Control (동적시스템 제어를 위한 다단동적 뉴로-퍼지 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.150-153
    • /
    • 2007
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

A Study on the Stabilization Control of an Inverted Pendulum Using Learning Control (학습제어를 이용한 도립진자의 안정화제어에 관한 연구)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.168-175
    • /
    • 1999
  • Unlike a general inverted pendulum system which is moved on the cart the proposed inverted pendulum system in this paper has an inverted pendulum which is moved on the two-degree-of-freedom parallelogram link. The dynamic equation of the pendulum system activated by the DD(Direct Drive)motor includes many nonlinear terms and has the high degree of freedoms. The problem is followed hat the exact mathmatical equations can not be analized by a general linear theory However the neural network trained by a simple learning method can control the dynamic system with hard nonlinearities. Learning procedure is the backpropagation algorithm with super-visory signal. The plant inputs obtained by the designed neural network in this paper can stabilize the pendu-lem and get the servo control. Experiment results have proce the effectiveness of the designed neural network controller.

  • PDF