• Title/Summary/Keyword: Dynamic Learning

Search Result 1,186, Processing Time 0.04 seconds

Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment (모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE)

  • 김은미;이배호
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.788-796
    • /
    • 2003
  • This paper proposes using dynamic momentum for squential learning method. Using The dynamic momentum improves convergence speed and performance by the variable momentum, also can identify it in the RMSE(root mean squared error). The proposed method is reflected using variable momentum according to current state. While static momentum is equally influenced on the whole, dynamic momentum algorithm can control the convergence rate and performance. According to the variable change of momentum by training. Unlike former classification and regression problems, this paper confirms both performance and regression rate of the dynamic momentum. Using RMSE(root mean square error ), which is one of the regression methods. The proposed dynamic momentum has been applied to the kernel adatron and kernel relaxation as the new sequential learning method of support vector machine presented recently. In order to show the efficiency of the proposed algorithm, SONAR data, the neural network classifier standard evaluation data, are used. The simulation result using the dynamic momentum has a better convergence rate, performance and RMSE than those using the static moment, respectively.

  • PDF

Reinforcement learning for multi mobile robot control in the dynamic environments (동적 환경에서 강화학습을 이용한 다중이동로봇의 제어)

  • 김도윤;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.944-947
    • /
    • 1996
  • Realization of autonomous agents that organize their own internal structure in order to behave adequately with respect to their goals and the world is the ultimate goal of AI and Robotics. Reinforcement learning gas recently been receiving increased attention as a method for robot learning with little or no a priori knowledge and higher capability of reactive and adaptive behaviors. In this paper, we present a method of reinforcement learning by which a multi robots learn to move to goal. The results of computer simulations are given.

  • PDF

Goal-Directed Reinforcement Learning System (목표지향적 강화학습 시스템)

  • Lee, Chang-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.265-270
    • /
    • 2010
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like TD-learning and TD(${\lambda}$)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present GDRLS algorithm for finding the shortest path faster in a maze environment. GDRLS is select the candidate states that can guide the shortest path in maze environment, and learn only the candidate states to find the shortest path. Through experiments, we can see that GDRLS can search the shortest path faster than TD-learning and TD(${\lambda}$)-learning in maze environment.

The Development of e-Learning System for Science and Engineering Mathematics using Computer Algebra System (컴퓨터 대수 시스템을 이용한 이공계 수학용이러닝 시스템 개발)

  • Park, Hong-Joon;Jun, Young-Cook;Jang, Moon-Suk
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.383-390
    • /
    • 2007
  • This paper describes the e-learning system for science and engineering mathematics using computer algebra system and Bayesian inference network. The best feature of this system is using one of the most recent mathematical dynamic web content authoring model which is called client independent dynamic web content authoring model and using the Bayesian inference network for diagnosing student's learning. The authoring module using computer algebra system provides teacher-user with easy way to make dynamic mathematical web contents. The diagnosis module using Bayesian inference network helps students know the weaker parts of their learning, in this way our system determines appropriate next learning sequences in order to provide supplementary learning feedback.

Stealthy Behavior Simulations Based on Cognitive Data (인지 데이터 기반의 스텔스 행동 시뮬레이션)

  • Choi, Taeyeong;Na, Hyeon-Suk
    • Journal of Korea Game Society
    • /
    • v.16 no.2
    • /
    • pp.27-40
    • /
    • 2016
  • Predicting stealthy behaviors plays an important role in designing stealth games. It is, however, difficult to automate this task because human players interact with dynamic environments in real time. In this paper, we present a reinforcement learning (RL) method for simulating stealthy movements in dynamic environments, in which an integrated model of Q-learning with Artificial Neural Networks (ANN) is exploited as an action classifier. Experiment results show that our simulation agent responds sensitively to dynamic situations and thus is useful for game level designer to determine various parameters for game.

Development of a Dynamic Motor on Smart Touch Control of one Point Linkage drag (1 포인트 드래그 연동 스마트 터치 제어용 다이나믹 모터 개발)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.327-332
    • /
    • 2015
  • Educational robot was introduced as an effective educational tool is to foster scientific creativity and learn the basic principles of science are applied to change the configuration of the educational after-school learning kits for science education. SMEs as a tool to foster scientific creativity center and a variety of educational robot technology and the wide range of games for students and robotic technology development, existing e-Learning by downloading mp3 music or learning content for the robot, such as the provision of specialized content Although the technology is still being developed to take advantage of the professional community formation is insufficient side. Currently, one-point linkage drag Smart Touch control dynamic motor development does not need this motor development is possible for users to easily.

Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory (힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습)

  • Kwon, Woo Young;Ha, Daegeun;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

Strategic Coalition for Improving Generalization Ability of Multi-agent with Evolutionary Learning (진화학습을 이용한 다중에이전트의 일반화 성능향상을 위한 전략적 연합)

  • 양승룡;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 2004
  • In dynamic systems, such as social and economic systems, complex interactions emerge among its members. In that case, their behaviors become adaptive according to Changing environment. In many cases, an individual's behaviors can be modeled by a stimulus-response system in a dynamic environment. In this paper, we use the Iterated Prisoner's Dilemma (IPD) game, which is simple yet capable of dealing with complex problems, to model the dynamic systems. We propose strategic coalition consisting of many agents and simulate their emergence in a co-evolutionary learning environment. Also we introduce the concept of confidence for agents in a coalition and show how such confidences help to improve the generalization ability of the whole coalition. Experimental results are presented to demonstrate that co-evolutionary learning with coalitions and confidence allows better performing strategies that generalize well.

A Study on How to Apply GBS (Goal-Based Scenario) to 'Ecology & Environment' Education in High School (GBS(Goal-Based Scenario)에 의한 수업 개발 및 적용 방안 연구: 고등학교 '생태와 환경' 수업 사례 중심으로)

  • Kang, In-Ae;Lee, Myong-Soon
    • Hwankyungkyoyuk
    • /
    • v.21 no.4
    • /
    • pp.94-110
    • /
    • 2008
  • Recently environmental problem becomes such a big issue all over the world that the necessity and importance of the environmental education in school has been simultaneously emphasized. While diverse methods for the environmental education have been researched, this paper, especially focused on a teaching-learning model called GBS (Goal-based scenario), aims to provide a new learner-centered approach for the environmental education. For this purpose, this paper first briefly presents two theoretical backgrounds of GBS (i.e., constructivism and Schank's dynamic memory theory), which is followed by specific and concrete strategies and methods of how to apply GBS in class for the teacher. GBS(Goal-Based Scenario) is a learner-centered model in which learners are presented with a reality-based scenario (or task or problem) and go through several stages of 'missions' to get to a final solution of the given scenario. GBS, while completely resonant with other constructivist learning models in terms of learner-centered approaches, is distinctive from others, when it supplies more specific, structured guides of learning, called 'missions', to the students throughout the whole learning process. In a words, GBS ought to be recognized as an unique learner-centered model compromising the contradictory concepts of 'learner control' and 'structure and specifics' in learning environments still without any damage of constructivist learning principles.

  • PDF

Content Restructure Model for Learning Contents using Dynamic Profiling (온라인 교육 환경에서 동적 프로파일 기반 학습 콘텐츠 재구성 모델의 제안)

  • Choi, Ja-Ryoung;Sin, Eun Joo;Lim, Soon-Bum
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.279-284
    • /
    • 2018
  • With the availability of real-time student behavioral data, personalization on education is gaining a huge traction. Data collected from massively open online courses (MOOC) has shifted the content delivery method from fixed, static to user-adopted form. Such educational content can be personalized by student's level of achivement. In this paper, we propose a service that automates the content restructuring, based on dynamic profile. With the student behavioral data, the proposed service restructures educational content by changing the order, extending and shrinking the published material. To do this, we record students' behavioral data and content information as a metadata, which will be used to generate dynamic profile.